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TEL: Low-Latency Failover Traffic
Engineering in Data Plane

Habib Mostafaei , Mohammad Shojafar , Senior Member, IEEE, and Mauro Conti , Senior Member, IEEE

Abstract—Modern network applications demand low-latency
traffic engineering in the presence of network failure, while
preserving the quality of service constraints like delay and capac-
ity. Fast Re-Route (FRR) mechanisms are widely used for traffic
re-routing purposes in failure scenarios. Control plane FRR typ-
ically computes the backup forwarding rules to detour the traffic
in the data plane when the failure occurs. This mechanism
could be computed in the data plane with the emergence of
programmable data planes. In this paper, we propose a system
(called TEL) that contains two FRR mechanisms, namely, TEL-
C and TEL-D. The first one computes backup forwarding rules
in the control plane, satisfying max-min fair allocation. The sec-
ond mechanism provides FRR in the data plane. Both algorithms
require minimal memory on programmable data planes and are
well-suited with modern line rate match-action forwarding archi-
tectures (e.g., PISA). We implement both mechanisms on P4
programmable software switches (e.g., BMv2 and Tofino) and
measure their performance on various topologies. The obtained
results from a datacenter topology show that our FRR mech-
anism can improve the flow completion time up to 4.6x–7.3x
(i.e., small flows) and 3.1x–12x (i.e., large flows) compared to
recirculation-based mechanisms, such as F10, respectively.

Index Terms—Traffic engineering, network monitoring, pro-
grammable data plane, low-latency, link failure, reinforcement
algorithm.

I. INTRODUCTION

RECENT cloud datacenters run numerous applications on
their networks that are interconnected through several

servers. The applications have low-latency requirements and
demand fast rerouting in the case of any failure. To address
these requirements, Fast Re-Route (FRR) mechanisms are
widely used to reroute the traffic [1]. Control plane FRR typ-
ically computes the backup forwarding rules to detour the
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traffic in the data plane when the failure occurs. This proac-
tive way of maintaining the backup forwarding rules in the
switches improves the network robustness and availability.

The control plane FRR solutions are widely adopted by the
network equipment vendors. Such solutions allow the network
administrators to implement the network functionalities as a
black-box option [1]. Nevertheless, these mechanisms provide
less flexibility to the network operators for customized packet
processing. Recent advances in programmable data planes [2]
offer flexible packet header processing, which is useful in
many use-cases, including network monitoring [3], and traffic
load balancing [4] to state few examples. Packet recircula-
tion can be used as a simple mechanism in the programmable
pipelines to detour the traffic to the pipeline’s input port. Then,
the pipeline can select the different egress port when the fail-
ure is detected. However, this solution decreases the packet
processing throughout and increases its latency [1].

Some business networking applications have stringent
Quality of Service (QoS) requirements such as latency and
bandwidth. Control plane FRR solutions could satisfy the QoS
requirements by using mechanisms such as max-min fair allo-
cation [5], [6]. In contrast, data plane solutions are fast in
rerouting the traffic but unaware of QoS constraints dictated
by the traffic policies. The reason is that the selected nodes in
the path may not have enough capacity to steer the traffic.

A. Motivations

In literature, several schemes exist to deal with link failures
in programmable data plane [1], [7], [8], [9], [10], [11], [12].
For instance, F10 [12] recirculates the traffic of failed ports
until an alternative port is explored. However, packet recir-
culation has a low performance [1]. Besides, the authors
in [1] create a set of new FRR primitives and implement
them in P4 [2] to preserve high availability and low latency.
Blink [10] is a fast data-driven remote failures algorithm to
deal with inter-domain failures in P4. It tracks failure signals
and monitors the link rate to reroute the traffic automatically.
FlexGate [11] proposes a rule placement algorithm to mitigate
the link failure on various network functions at high through-
put. Nevertheless, none of these approaches simultaneously
consider the control plane and data plane FRR mechanisms.
Motivated by these considerations, our intention in this paper
is to propose two FRR mechanisms that implement on control-
and data planes simultaneously. The first one is a control
plane-based mechanism that preserves QoS requirements using
max-min fair allocation (i.e., traffic engineering). The second
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one provides low-latency FRR in the data plane. Both mecha-
nisms require minimal memory on programmable data planes
and well-suited with modern line rate match-action forwarding
architectures (e.g., PISA).

Specifically, we respond to the following questions: i) Is it
possible to provide failover traffic engineering? (see Section II)
ii) How can we preserve a set of QoS constraints in the steering
traffic of different users? (see Section III-B) And, iii) How can
we solve the max-min fair allocation problem in a linear time?
(see Section III-B).

B. The Goal of the Paper and Contributions

We propose two FRR mechanisms, i.e., one in the control
plane and one in the data plane, to detour the traffic in the
case of failure. The control plane solution, TEL-C, can satisfy
max-min fair allocation in assigning flows to the network links.
This solution is a proactive solution and should be executed
before network operations. To accomplish this, we use the
Distributed Learning Automaton (DLA) to explore the paths
while considering multiple QoS constraints, such as delay and
capacity of the link. This problem is known to be an NP-hard
problem [13], and our approach finds each candidate solution
in linear time. It is an iterative approach to find the best optimal
path among all possible paths.

The second solution, TEL-D, is similar to the
state-of-the-art data plane solutions. In this solution, we select
a random egress port from the available list of ports to reroute
the traffic when a failure occurs. It is well-suited in datacenter
topologies.

The proposed solutions avoid recirculations and lead to the
following goals.

• Low latency and high throughput: In case of failure,
the traffic will rapidly reroute to the next available port
without performance degradation and irrespective of the
number of failures.

• Memory cost: Our proposed FRR mechanisms occupy
minimal memory on the P4-enabled devices.

• Flexibility: The proposed FRR mechanisms could guar-
antee a set of link failures. It provides two sets of primary
and backup forwarding rules.

Hence, we summarize our main contributions as follows.
• We formalize the traffic engineering with QoS require-

ments as a max-min fair allocation problem.
• To solve it, we propose a control-based FRR mecha-

nism using a reinforcement learning algorithm that selects
shortest paths using DLA, which finds primary and
backup paths for each traffic demand of each network
application/service.

• We propose a data plane FRR mechanism that can be
used as an FRR primitive in programmable data planes.

• We checked the feasibility of both FRR mechanisms in
P4 and BMv2 and Tofino software switches.

• Finally, we evaluate our solutions on various topolo-
gies. To be precise, we compare TEL-C against Yen’s
K-shortest path algorithm on the length of shortest paths,
the algorithms’ running time and traffic load. Also, our
evaluation on a datacenter topology shows that TEL-D

can improve the Flow Completion Time (FCT) up to
4.6x–7.3x (i.e., small flows) and 3.1x–12x (i.e., large
flows) compared to recirculation-based mechanisms, such
as F10 [12], respectively.

C. Roadmap

We organize the paper below. Section II describes the
system model explaining the optimization problem. In
Section III, we present our FRR mechanisms. Section IV
presents the proof-of-concept in P4-enabled devices. The sim-
ulation results are presented in Section V. We explain the
practical appliance of our proposed FRR mechanisms in
Section VI. The related work comes in Section VII. Finally,
we conclude our work in Section VIII.

II. SYSTEM MODEL

In this section, we formalize the traffic engineering with
QoS requirements as a max-min fair allocation problem. Then,
we define an objective function to proactively find paths for
flows over multiple rounds. Finally, we give an example for
the problem before and after a link failure. Table I presents
the main notation used in the paper.

A. Link Capacity, Flow Conservation, Delay, and Cost

We assume that we have bi-directed graph G = (S, E)
where S is a set of P4 switches which are connected to each
other (where, |S| � S ) and E is a set of edges where |E| � E .
Also, we can transfer a set of flows between two pairs of
switches.

Link capacity. Equation (1) ensures the link capacity
between each pair of P4 switches (n and m). Let f be a single
flow crossing link n and m , ∀f ∈ F .

∑|F|
f=1

(
Φ
f
(n,m)

· Rf
)
≤ μ · B(n,m), ∀n,m ∈ S, (1)

where Rf is the required bandwidth for the f -th flow; μ is a
ratio of crossing traffic to total bandwidth of each link; B(n,m)

is the matrix of link bandwidth between n and m , and Φ
f
(n,m)

is the network resource assignment matrix between n and m
for the flow f .

Flow conservation. Equation (2) indicates the flow conser-
vation and its limitation applied in the presented topology. If
a flow leaves its source switch s f , then it can not return to
the source (no loop– see the first equality). If a flow enters a
destination switch d f , it remains there (see the second equal-
ity). Finally, the total input flows from a node should be the
same as the total output flows on the same node (n) (see the
third equality).

∑N
m=1Φ

f
(n,m)

−∑N
m=1 Φ

f
(m,n)

=

⎧
⎨

⎩

1 if n = s f

−1 if n = d f

0 Otherwise
. (2)

Propagation delay. We can control the propagation delay of
each flow within a path p using Eq. (3). This equation ensures
that the total delay of encountered pair switches per-flow of a
path p should be at most equal to maximum tolerable delay
for each p or T p . Equation (3) satisfies loop prevention for
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TABLE I
MAIN NOTATION

each flow f . This equation ensures that the delay of the path
is less than the threshold value T p .
∑|p|

(n,m)

(
Φf
(n,m)

· D(n,m)

)
≤ T p , ∀f ∈ F , ∀(n,m) ∈ p,(3)

where D(n,m) is the propagation delay of link (n,m); p is a
path from s f to d f consisting a set of links between a source
and a destination. Equation (4) ensures that each flow crosses
each link once.

∑N
m=1Φ

f
(n,m)

≤ 1, ∀n ∈ S, ∀f ∈ F , (4)

Φf
(n,m)

∈ {0, 1}, ∀n,m ∈ S, ∀f ∈ F .
Cost. We model the cost of steering traffic flows from path

p as follows.

C(n,m) =
∑|F|

f=1 C
f
(n,m)

, ∀(n,m) ∈ p, (5)

where C f
(n,m)

is the cost of flow f while crossing link (n,m).

B. Objective Function

Our main objective is to allocate the flows according to the
available resources using max-min fair allocation. Equation (6)
calculates this function φ(n,m) which implies the weighted
function per link (n,m).

φ(n,m) = α · Bu (n,m)
B(n,m)

+ λ · C(n,m) + ζ ·D(n,m), ∀n,m ∈ S,
(6)

where the fraction Bu (n,m)
B(n,m)

is the bandwidth utilization (or
link utilization) and C(n,m) is the cost of steering traffic from
switch n to m (it is an input of the problem); α, λ and ζ

are the coefficients and have values between 0 and 1. In this
way, if the priority is given to the delay, we require to define
high ratio for ζ. Otherwise, if the link cost is the highest pri-
ority we need to provide higher ratio for λ, and finally, if link
utilization is the importance criterion for the application, we

need to have higher value for α coefficient in the objective
function.

Herein, we state some example use-cases. Many cloud
service providers, e.g., Google, Amazon, Microsoft, offer
network services with different QoS requirements to the
users in different locations [14]. For example, network
services that offer critical business transactions are sen-
sitive to delay and bandwidth rather than cost. While
other services, offered by Content Delivery Network (CDN)
providers, that transfer a large volume of data dictate high
data transmission cost [15], [16]. Furthermore, in 5G use-
cases, we require to provide Ultra-Reliable Low-Latency
Communication (URLLC) channel to satisfy mobile users’
demands [17]. Therefore, depending on the use-case, the
coefficient for the different parameters can be set.

Here, we apply a max-min fair allocation [18] consider-
ing the φ(n,m) for each link. The network administrator can
select the related coefficient of network latency and band-
width usage according to the network (flow) requirements.
Specifically, large flows demand high bandwidth while the
short flows are sensitive to delays. Therefore, according to
the flow sizes, desired values for the coefficients of the par-
ticipant terms in (6) are adjusted. The QoS is a priority
given to each flow according to the application requirements.
For example, an application can request low transmission
delay [19].

Definition: Flow f bottlenecks at link (n,m) if the follow-
ing conditions occur:

1) Bu(n,m) = 1;
2) Flow f obtains the maximum rate of all flows crossing

link (n,m).
Running example: Fig. 1 presents a network without failure

with 3 links carrying 2 flows. The max-min fair allocation of
flow 2 (red) with φ = 10, which is bottlenecked at link l3,
and flow 1 (green) with φ = 20, which is bottlenecked at link
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Fig. 1. A simple running example network illustrate fairness before failure
occurs. Flow 2 (red) is bottelnecked to φ(n,m)=10 and Flow 1 (green) is
φ(n,m)=20.

Fig. 2. A simple running example network illustrate fairness after failure
occurs. Flow 2 (red) is bottelnecked to φ(n,m)=10 and Flow 1 (green) is
φ(n,m)=20.

l2. Link l2 has spare φ since (green) flow 2 is bottlenecked
elsewhere.

Fig. 2 illustrates max-min fair allocation in the the pres-
ence of a link failure (l2). The traffic steers from links l4
and l5 after failing to link l2 with satisfying the max-min fair
allocation.

III. TEL: THE SOLUTION

In this section, we describe our contribution to failover traf-
fic engineering. After modeling the network requirements, we
should gather the network information to find the best paths
while preserving the QoS constraints. We first explain TEL-C.
Then, we describe TEL-D (see Section III-D). TEL-C has
three different phases, namely, network monitoring, path selec-
tion and rule generation. In the first phase (Section III-A), the
information of the network is collected by the P4 runtime to
use it as the input for the path selection phase. We select
K unique shortest paths for K network services/applications
using the concept of DLA to carry the flows in the path selec-
tion phase (see Section III-B). Finally, TEL-C generates a set
of proper forwarding rules according to the chosen shortest
paths in the previous phase (see Section III-C).

A. Network Monitoring

To obtain the network information, we should send a set
of probe packets periodically to the network. These pack-
ets can be sent either by the controller or end-hosts because
there is no packet generation mechanism available in a P4-
enabled device. We use P4 runtime to obtain the information
on the network. The controller of TEL uses probe packets
to get network information like the propagation delay and
bandwidth. Each probe packets contains a set of fields used
to collect the link information. The information of links is
cloned to the controller to build the network topology. The

time to send such probe packets can be tuned depending on
the user’s needs. However, the path selection phase requires
network information before applying the selection procedure.
We also assume that the network topology is known in advance
to the controller.

B. Path Selection

Selecting an optimal forwarding path with multi-constrained
QoS requirements is a well-known NP-hard problem [13], and
we limit NP-hard discussions here. Instead, we focus on the
detail of our approach. We use the concept of DLA, which is
a reinforcement learning approach to solve a problem. Each
DLA is a network of Learning Automaton (LA). LA is used for
learning simple actions using some simple agents. However,
its functionality is limited to the purpose of this work while
considering several network-related parameters. Interestingly,
DLA is composed of a network of LAs and can be applied to
complex network problems. Therefore, for the need of this
paper, we adopted a DLA solution. Also, the convergence
of a solution using DLA was proven by using Martingale
Theorem [20].

In the LA concept, there is a set of actions for each LA to
pick at any time, and the LA randomly selects one of them.
There is a probability associated with each action. The ran-
dom environment supplies the reinforcement signal β to the
chosen action of an LA agent. The LA updates the action
probability based on the received signal. This is called the
training phase of LA, like the other reinforcement learning-
based mechanisms. When the learning phase ends, the LA
selects the best action among the available actions. To do so,
the LA checks the probability of its actions and returns the
action’s index with the highest probability as the best action.

We create a corresponding DLA graph of the network graph.
Each node in the DLA graph has an LA helping it to choose
the best action. The number of actions for each LA is equal
to the number of outgoing edges O from each node in the
network graph. The initial probability of each action is 1

O .
Selecting an action by the LA of each node corresponds to
selecting a neighbor node in the network graph.

Specifically, in this paper, we utilize variable-structure
automata [21] on a P-model LA (βi is a fixed value: zero or
one). We select this automaton because we require to decide
if the explored path is better than the previous one (a binary
decision).

Let p(n) and p(n + 1) be the action probability vectors at
the nth and (n + 1)th round of learning, respectively. Hence,
we define learning algorithm T in Eq. (7):

p(n + 1) = T [p(n), α(n), β(n)], (7)

We define the operation of the LA below. Considering p(n)
as an action probability vector, the LA arbitrarily chooses an
action αi (n) and applies it to the environment. When we
receive the feedback from the environment, the LA algorithm
updates its action probability vector using Eq. (8) for β = 0
and (10) for β = 1:

pi (n + 1) = pi (n) + a(1− pi (n)) j = i (8)

pj (n + 1) = (1− a)pj (n) ∀j , j �= i (9)
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pi (n + 1) = (1− b)pi (n) j = i (10)

pj (n + 1) = b
r−1 + (1− b)pj (n) ∀j , j �= i (11)

where r is the number of actions; pi (n) is the probability
of action αi ; pj (n) is the probability of action αj ; a is the
reward, and b is the penalty parameters, respectively.

Algorithm 1 presents the pseudo code of our path
selection algorithm. This algorithm runs in several iterations
(lines 17-31), and the DLA explores a solution among all the
candidate solutions in each iteration. Here, the DLA finds a
path from a source s to a destination d from the network graph
G . At the end of each iteration, the chosen path is examined
based on Eq. (6) (see line 24). If the result of evaluating the
current path’s objective function is better than the previous
value, the environment generates a reward for the selected
path.

Then, all the chosen actions by the LA of each node are
rewarded based on Eq. (8) that results in placing all the chosen
nodes in Pbest as the best-selected path until now (see line 27).

This procedure continues until the stop condition is met.
We define a fixed integer value of Ith as the stop condition
(see line 31). The nodes in the Pbest will be chosen as the
path for the requested traffic flow. At the end of this phase,
Algorithm 2 updates the capacity of the links in the network
graph G by applying the requested flow f in the chosen
path p.

After finding a path for each flow request, the network graph
should be updated with a new objective function. Thus, this
parameter varies over time, and DLA learns to choose the best
paths for the flows using the updated network graph.

Running the above procedure results in a path selection. In
a provider network which has K different service demands,
we need to select a path for each one. To do so, we repeat
the same procedure K times to find a path for each requested
service.

Pruning rules. We use a Boolean value along with each
action of LA to determine if the action can be chosen by the
DLA. The LA can select an action if and only if the cor-
responding value to that action is True. We apply several
pruning rules to speed up the running time of the algorithm
and its convergence as follows.

• The corresponding actions of the nodes that are selected
in each iteration are disabled. This helps in reducing
the search space in the DLA graph. At the end of each
iteration, all the disabled actions are enabled again to con-
tribute to the next round of the path selection process.
Disabling the corresponding action of the chosen edge
avoids any routing instability. It also helps to improve
the convergence of the algorithm.

• The DLA removes a node from the currently selected path
if there is no possible action selected from that node. This
rule prevents dead-end path selection in each round.

• We disable the corresponding actions of the links in each
LA that do not have spare bandwidth to place other flows.
This rule prevents capacity oversaturation.

Fig. 3 presents the interaction of LA and the random envi-
ronment in the DLA theory. The adjacency list of each node
in the network graph forms the action-list of each LA. We

Algorithm 1: The Delay-Ranked Algorithm
input:

– The set of sources and destinations
– The flow request

output:
– K -shortest paths {p1, . . . , pk} ∈ P

1 read the network graph file G ;
2 create DLA graph from the network graph;
3 equip each node in the DLA graph with LA;
4 Pbest ← The best path in each iteration of DLA;
5 Ith ← The number of iterations for stop condition;
6 P ← The set of paths;
7 B ← The set of backup paths;
8 Lp ← The list of explored paths for each (s , d );
9 Pcur ← The current best explored path each (s , d );

10 counter ← 0 ; /* A counter for the paths.

*/
11 while counter ≤ K do
12 s , d ← a unique random source and destination;
13 s ← a random node;
14 d ← a random node;
15 valPcur ← ∅;
16 Lp ← ∅;
17 repeat
18 repeat

; /* action selection is equal
to selecting a neighbor node.

*/
19 s randomly select an action;
20 activate the LA of the corresponding action;
21 Pcur ← P ∪ s ;
22 disable the selected action of s ; /* this

reduces the search space of
problem. */

23 until d is not visited;
24 evaluate the path using objective function in

Eq. (6);
25 if val(Pcur ) ≤ val(Pbest ) then
26 reward the selected actions in Pcur

using Eq. (8);
27 Pbest ← Pcur ;
28 Lp ← Pcur ∪ Lp ;
29 end
30 Enable all the actions;
31 until the stop condition of LA is met (Ith );
32 P ← P ∪ Pbest ;
33 B ← B ∪ Lp [1];
34 counter ← counter + 1;
35 end

also add the relevant parameters of TEL-C to show how they
interact. We prune each LA’s action list to speed up the conver-
gency of LA to the optimal action. In such cases, if an action
of LA is disabled during an iteration, then the probability of
that action remains unchanged while the probability of other
action updates according to Eq. (8).
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Algorithm 2: Update Path Weights

1 Procedure UpdateBandwidth(p,f )
2 for each (n,m) ∈ p do
3 C(n,m) ← C(n,m) − f ;
4 end

Fig. 3. The abstract architecture of learning automaton for TEL-C.

Time complexity of path selection. We describe the time
complexity of Algorithm 1. Each round of the DLA algorithm
requires O(E ) to find a path where E is the number of edges
in the DLA graph. This procedure repeats I times to find the
best path from a source to a destination. Thus, the running
time of lines 17 to 31 is I × O(E ). However, we run this
procedure K times to find K different paths. Therefore, the
total running time of the path selection phase is K×I×O(E ).

The above time complexity show that TEL-C can solve the
problem in a linear time by preserving the QoS constraints for
different network applications.

C. Rule Generation

The rule generation phase creates a proper set of table
entries for the corresponding switches (i.e., the selected nodes)
in each path. These rules should be installed on the switches
using the P4 agent to steer the traffic. However, to differentiate
the traffic of different flows that we use an ID for each path
(see more detail in Section IV-B).

To generate the forwarding rules, we keep track of all paths
from the sources to the destinations, including the intermediate
nodes. There might be multiple paths available between each
pair of sources and destinations, but TEL-C exploits the ones
explored during the path selections phase. Therefore, to gen-
erate each forwarding rule for a given P4 switch, we have to
check the proper egress port. Suppose that we have a path
from s1 → s2 → s3. When we generate the forwarding rule
for s1, we check the network graph for the egress port of s1
that is connected to s2. Then, the egress port number of s1
along with the source and destination IP addresses of this path
is inserted as a forwarding rule into s1. We follow the same
procedure for s2 and s3 in this path.

D. TEL-D

TEL-C proactively computes paths, i.e., primary and
backup using DLR by checking the network. A simplified ver-
sion of the path selection algorithm of TEL-C without the
need for the control plane interaction is called TEL-D. TEL-
D is suitable for datacenter topologies where the servers are
within a few hops distance from each other and link latencies

Algorithm 3: TEL-D in Dataplane
input: port_status
output: a port

1 Procedure findPort()
2 for each port ∈ port_status do

; /* We check the corresponding bit
of each active port using XOR
operator. */

3 if port⊕ 0x1==0 then
4 ActivePorts ← ActivePorts

⋃
port ;

5 end
6 end
7 nextPort=random(ActivePorts);
8 return nextPort;

are short. Thus, we use the basic idea of path selection in the
DLA manner in TEL-D.

TEL-D firstly checks all the active ports when the failing
occurs to find all the available active ports. We use one bit per
port in each switch to set the status of them. By performing a
XOR ⊕ on the value of each port with 0b1, we check if the
port is active. Following this operation for all ports, we can list
all the available active ports. TEL-D randomly selects one of
its outgoing egress ports and forwards the flows through that
port. Algorithm 3 shows the pseudo code of TEL-D in detail.

IV. PROOF-OF-CONCEPT

We implement path selection reported in Section III-B
and rule generation (see Section III-C) parts of TEL-C in
Python with around 600 lines of code. We now explain the
architecture of TEL-C with the PISA switch model (see
Section IV-A). Then, we explain the P4 code implementation
(see Section IV-B). Finally, we briefly explain the TEL-D (see
Section III-D).

A. TEL-C Architecture

Fig. 4 presents an abstraction of P4 PISA pipeline [22] with
TEL-C. The P4 implementation of TEL-C is carried out in
P4_16 [23] using the BMv2 [22] switch. It contains the con-
trol and data plane layers. The control plane is in charge of
monitoring the network and selecting the paths according to
the network requirements (see Section III). The data plane
forwards the packets based on the forwarding rules generated
by the control plane. The presented model in the data plane
includes forwarding pipelines, namely, ingress and egress. In
this figure, the network operators can configure the parser to
match arbitrary packet header fields. Each pipeline includes
a sequence of match-action stages. The ingress and egress
pipelines can be programmed using P4 runtime as the control
plane agent.

We compile the P4 implementation of TEL-C and gener-
ate the JSON representation to load on the switches. In this
abstraction model, the forwarding rules for the switches are
generated using the Python part of TEL-C.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:49:32 UTC from IEEE Xplore.  Restrictions apply. 



MOSTAFAEI et al.: TEL: LOW-LATENCY FAILOVER TRAFFIC ENGINEERING IN DATA PLANE 4703

Fig. 4. PISA abstraction with TEL-C.

Fig. 5. Internal architecture of TEL-C.

Fig. 5 depicts the internal architecture of TEL-C that is
implemented in Python. In the beginning, the Collector
component monitors the network and obtains the required
information (see 1 ). To gather the network information, a
set of probe packets are generated. Each switch replies to the
probe packets accordingly. Then, the information are fed 3
into DLA builder component that makes the correspond-
ing DLA graph from the network graph (see 4 ). The Path
selector performs path selection using the DLA network
and link information. TEL-C chooses each path according
to the algorithm in Section III. After computing the paths,
we need to generate the forwarding rules through Rule
generator component and load them into the switches (see
5 ). We use the P4 local agent for this purpose. The switch

is now ready to steer the network traffic.

B. P4 Implementation

To implement our solution in P4, we need to keep the state
of all paths in each switch. We use the P4 registers for this
purpose by assigning a bit for each path. We call this register
path_status, which has 0 value to show a primary path and
1 to indicate the backup one. The overall number of bits is
equal to the given number of paths for the topology, i.e., K
in Section III-B. We use �log |P|� bits for this purpose.

We use two tables to implement TEL-C. The first table,
table_1, matches packets based on the set of source and des-
tination IP addresses that pass a set of links as discussed in
Section II and assigns a set of IDs as the flow_set IDs. We

Fig. 6. Path forwarding of TEL-C in P4.

use P4 metadata to store the flow_set IDs. The metadata are
memory units that can carry packet data within the switch.
Each flow_set has �log |P|� bits length. All the incoming flows
pass table_1 to get the proper ID along with a proper value
from the registers for path_status.

In the second table, table_2, the packets are matched based
on the flow_set ID and path_status and forwarded to a proper
egress port. We use the basic IPv4 forwarding to forward the
traffic of each path. We have two set of rules to install on
each switch, namely, primary and backup rules. Both sets are
proactively installed. We use the P4 local agent to update the
path_status register in the case of any path failure to set the
proper values. Fig. 6 depicts the ingress control of TEL-C
in P4.

Bandwidth monitoring. To acquire the link information,
we should collect the relevant information and forward them
along with probe packets. P4 enables the customized header
definition, and we use this feature to monitor the information
of links. Therefore, we define the probe packet header, includ-
ing the number of sent bytes, the last timestamp, and the
probe packets’ current timestamp. Depending on the num-
ber of egress ports in the network, a suitable port for the
monitoring information of egress ports can also be defined
in the new header fields. The required information of fields
for the probe packets is collected by checking the switch’s
standard_metadata of the switch.

To obtain the available bandwidth information, we need the
number of bytes sent since the last probe packet plus the
previous and current packets’ timestamps. This information is
cloned to the controller for the available bandwidth measure-
ments. Afterward, we calculate the link utilization information
at the controller. We use P4 registers in each switch to store
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Fig. 7. TEL-D FRR encoding.

the number of transmitted bytes and the packet timestamps—
the value of these registers updates when a new probe packet
enters a switch.

Handling failure. When a failure occurs on a link, the cor-
responding bit to that link’s status should be set to 0. We
use path_status metadata to carry the status of the egress
port for the packet. The packets are forwarded according to
this metadata’s value, either using a primary or backup path.
The packets match with path_status metadata along with the
flow_set ID in table_2. Then, the packet is forwarded to the
proper egress port accordingly.

TEL-D implementation. We implement TEL-D in P4
using two tables. The first table is used to assign a failure ID
(FID) to each failure based on the port status. TEL-D uses
the second table to forward the packet to an egress port based
on FID. For example, if a switch has four ports <1,2,3,4>,
then we indicate each port’s status with one bit, i.e., 1 to indi-
cate the port is up and 0 to show the port is down. We use
FID in the second table to find the FWD_SET that is a list
of candidate active ports to forward the packets. A random
number within the list of FWD_SET is chosen to use as the
final egress port to steer the traffic of failed link.

Tofino implementation. We successfully test TEL-C and
TEL-D on Tofino P4 software switches. Hence, this confirms
that the proposed approaches could be applied in real P4 pro-
grammable switches. In both approaches, we need to have two
tables to install the forwarding rules. Interestingly, we do not
need complex match operations in both tables to match the
traffic.

V. PERFORMANCE EVALUATION

In this section, first, we describe the memory cost of using
TEL and testbed. Then, we report the result of comparisons
with Yen’s K-shortest path algorithm. After that, we compare
TEL-D against the state-of-the-art FRR mechanism, F10 [12],
by leveraging circular FRR sequences. Moreover, we com-
pare TEL-C with DDC [8] for WAN topologies. Finally, we
report the differences between our mechanisms with MPLS
and OSPF IP FRRs.

Memory cost. TEL-C uses extra memory to store the
backup paths. Considering 25 paths, we use 7 bits for flow_set
to encode each path ID and one bit to determine the backup
path’s usage. We require this encoding to differentiate the
traffic of the end-hosts. Otherwise, the traffic could not be
forwarded to the right destination. All in all, we need 8 bits
in each switch to encode all the paths. We also require the
information of the new egress port, i.e., 9 bits, and the MAC
address, i.e., 48 bits, for the new path to steer the traffic of

the failed path. Therefore, the switches that handle each failure
require extra 57 bits for this purpose.

Each failed path influences the rule update in two switches,
and here we explain the reason by providing an example.
Assume that there are two paths from node ‘A’ to node ‘D’,
i.e., A↔ B↔ D and A↔ C↔ D. If the link (A, B) fails,
we need to update the forwarding rules in node ‘A’ and ‘D’
to forward the traffic through node ‘C’. Thus, nodes ‘A’ and
‘D’ require extra 65 bits to handle the failure. TEL-C installs
additional forwarding rules on the network devices. To have
a resilient and robust system, we should prepare the system
for the network changes like a failure. For each link failure,
TEL-C installs two additional forwarding rules, i.e., one rule
in table_1 and one rule in table_2.

The memory usage of TEL-D depends on the number of
ports per switch for port_set and FWD_SET fields.

Testbed. We conduct the simulation using Mininet network
emulator [24] on an Intel Xeon CPU E5-2667 3.3GH VM
with 190 GB RAM and 32 CPU cores running Ubuntu server
18.04. We will make results of TEL fully reproducible in [25].

A. Comparison With K-Shortest Path

In this section, we compare the performance of TEL-C
with Yen’s K-shortest path algorithm. The Yen’s K-shortest
path algorithm finds K shortest paths between a source and a
destination. This algorithm’s time complexity is O(KN (M +
N logN )) where K is the number of calls, M is the num-
ber of edges, and N is the number of vertices in the graph,
respectively.

K-shortest path algorithm implementation. To implement
Yen’s K-Shortest Path (KSP) algorithm, we use Dijkstra’s
algorithm to find K paths for each source-destination pair.
After selecting each path, we update the available bandwidth
of the selected links to choose the subsequent paths. Then, we
select the best path among the K paths as the primary path.
We choose the other paths as a backup when needed.

To evaluate the algorithms’ performance, we select some
pairs of random sources and destinations in Goodnet and
AttMpls networks in terms of the average number of hops
and running time for various K . The value of K varies from
2 and 6 so that in failure scenarios, both algorithms can sup-
port up to 6 failed paths. Fig. 8 shows both algorithms explore
paths with a similar number of hops. However, TEL-C needs
around an order of magnitude less time to find paths when
K = 6. TEL-C prunes the search space when looking for a
path, which significantly reduces the running time.

Quantification of link load: To measure the routing
performance of the algorithms, we assess the throughput of
each link when every possible link in the network fails. To
do so, we take the maximum link utilization over each link
failure for all links. We compute the load of individual links
L(n,m) as follows.

L(n,m) = max
∀(n,m)∈E

Bu
(n,m). (12)

We compute this measurement for various failure scenarios
per pair of sources and destinations. Furthermore, to satisfy
this requirement, the network graphs should be 2-connected.
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Fig. 8. The performance of TEL-C vs. Yen’s K-shortest path algorithm on
a) Goodnet and b) AttMpls networks.

Fig. 9. The maximum load on each link for failure free case, TEL-C, and
KSP where 9(a)) COST239, and 9(b)) AttMpls networks.

Therefore, we report the results for 2-connected network
topologies.

Fig. 9 shows the maximum link load on each link for
COST239 [26] and AttMpls networks for failure-free, TEL-
C, and KSP algorithms. We replace the Goodnet network
with COST239 since the Goodnet topology is not 2-connected,
and we cannot run the link load experiment for our scenar-
ios on this network. We order the link IDs in this figure for
presentation purposes. The general trend reports that the max-
imum load of each link increases when the network faces a
link failure. For some scenarios, we see that the maximum
link load is over 100% with TEL-C and KSP due to the the-
oretical analysis, i.e., we consider theoretical link utilizations
without packet drops. Furthermore, we observe that TEL-C
better distributes the load of the network for various failure
scenarios.

B. Performance on Datacenter Topology

In this part, we compare TEL-D with F10 [12] as the state-
of-the-art FRR mechanism. We use leaf-spine topology for
comparison with 4 leaf- and spine switches (see Fig. 10).
Each link is 100 Mbps. Each leaf switch is connected to 4
servers. Since we are using the Mininet emulator, no additional
link delays are applied between switches. We also use the

Fig. 10. Topology used for emulated evaluation.

recommendation in [27] to achieve high bandwidth throughput
of BMv2.

F10 implementation in P4. F10 [12] is one of the state-of-
the-art FRR mechanisms that we implement in our datacenter
topology. Considering a datacenter topology with a set of spine
and leaf switches with z links between them, F10 can tolerate
up to z -1 link failures. It also guarantees loop-free packet
forwarding. F10 circularly routes the packets. For example, in
our topology in Fig. 10, when links (S1, L1) and (S1, L2) fail,
F10 forwards packets through port 3 of S1, which is the next
available port in the circular sequence. In this example, the
packets of failed links are sent to L3, and then we apply FRR
on L3, and the packets reach node S4. From there, they will
be forwarded to the right destination.

Workloads. We use the two most popular empirically-
derived realistic workloads, i.e., Web-search [28] and cache-
follower [29]. In either workloads, the distributions of the
traffic are heavy-tailed. We use the traffic generator in [30]
to generate the desired flows in the network according to a
Poisson distribution of each workload and the network load.
The load varies in the range 20% and 70%. The traffic gen-
erator generates different flow sizes as follows. Small flows
have the size < 100 KB, while mid-size flows are [100 KB,
10 MB). Large flows have the size ≥ 10 MB. We send 500
flows, and the results are averaged over 10 different runs.

Routing and congestion control. TEL-D in a datacen-
ter topology relies on ECMP for load balancing which splits
traffic using hash-based mechanism. In this mechanism, the
incoming traffic to each leaf switch is randomly forwarded to
a spine switch. The spine switch forwards the traffic to the
destination leaf switch.

FCT of flows in Web-search workload. Focusing on small
flows, TEL-D significantly improves the FCT of small flows
in the datacenter topology. The results of our experiments
for Web-search workload were shown in Fig 11. When one
link fails in the topology, TEL-D improves the average FCT
of small flows between 4.6x to 7.3x compared to F10 in
Fig. 11(a). TEL-D improves 4.3x to 7.1x the 99-percentile
FCT of small flows when the topology faces a link failure
in Fig. 11(b). Focusing on mid-size flows, TEL-D enhances
the average FCT between 3.8x to 7.8x compared to F10 in
Fig. 11(c). Focusing on large flows, TEL-D improves the aver-
age FCT between 3.8x to 6.2x compared to F10 in Fig. 11(d).
Similar trends exist for 2 link failures. Interestingly, TEL-D
performs very close to no Fail case, especially for the scenarios
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Fig. 11. Comparison between TEL-C and F10 recirculation FRR primitives under 1 and 2 link failures.

with load ≤ 40%, because TEL-D can select one random
egress port among the available active ports to steer the traffic.

FCT of flows in cache-follower workload. Focusing on
small flows, TEL-D significantly improves the FCT of small
flows in the datacenter topology. The results of our experi-
ments for cache-follower workload were shown in Fig. 12.
When one link fails in the topology, TEL-D improves the aver-
age FCT of small flows between 4x to 11.3x compared to F10
in Fig. 12(a). TEL-D improves 3.6x to 9.7x the 99-percentile
FCT of small flows when the topology faces a link failure
in Fig. 12(b). Focusing on mid-size flows, TEL-D enhances
the average FCT between 3.1x to 12x compared to F10 in
Fig. 12(c). Similar to Web-search workload results, all the
approaches perform similarly in cache-follower workload for
2 link failures. We observe that TEL-D performs very close
to noFail case in cache-follower workload. Note that since we
run the experiments for 500 flows, we do not have large flows
results in Fig. 12.

C. Performance on WAN Topology

In this section, we measure the performance of TEL-C and
compare it with DDC [8]. DCC relies on Gafni-Bertsekas’s
link reversal algorithms [31] to provide connectivity with two
versions, namely, partial and full reversal. We implement full
reversal due to its simplicity. DDC keeps the nodes’ state, such
as the direction of each link, and we use P4 registers for this
purpose. It also keeps a state in the packet header to compare
the sequence number of arrived packets. We define a one-
bit header field for the sequence number our implementation
in P4.

Each network topology has a different number of nodes
and ports. Depending on the number of egress ports of each
node, we need to keep a different number of bits in the reg-
isters. This is not feasible by having a unique P4 code for
all nodes. Therefore, we template the P4 code of DDC using
Python Jinja2. To provide full connectivity among the nodes,
we need to keep one DAG per node since GB’s algorithm is
based on DAG. Currently, the P4 language does not support

the register of registers and thus, we rely on a single DAG for
the evaluation. Note that when running the network topology
using Mininet, we load node-specific P4 code on each node.

We use path stretch for comparison, which is defined as
the ratio between the length of the path taken by a specific
algorithm, i.e., TEL-C and DCC, and the shortest path in the
current network. Path stretch is affected by the topology, the
choice of source and destination, and the number of failed
links [8].

We compare TEL-C and DDC on different topologies such
as those of RocketFuel [32] similar to DCC paper, and report
some representative results. Fig. 13 shows the 99th percentile
stretch of TEL-C and DDC on AS3967 for first 13 packets
after link failures. Both algorithms find routes around the failed
links after some packets. Generally, by increasing the packets,
the stretch decreases to some points, and more link failures
result in a higher stretch. TEL-C finds routes for failed links
faster than DDC. We also checked the median value of stretch
for the 13 packets. Both TEL-C and DDC have a median
value of 1 in Fig. 13.

We now check the steady-state stretch of the chosen path.
Fig. 14 report the 99th percentile cumulative distribution func-
tion (CDF) of stretch for AS3967 with 1 and 2 link failures.
Generally, more link failures result in a higher stretch for both
algorithms. Since TEL-C leverages the idea of backup paths,
the stretch is smaller than those of DDC in both 1 and 2 link
failures.

D. Comparison With MPLS FRR

Multiprotocol Label Switching (MPLS) is widely used to
provide FRR in the order of a few 10s of milliseconds delay to
repair label-switched path (LSP) tunnels [33]. Similar to TEL-
C, the backup LSPs are proactively generated to the desired
failures. Therefore, the router detours the traffic from the failed
port to an alternative by swapping the packet’s label on the
MPLS stack. The packets follow the new paths until reach-
ing the merge point. At this point, the label of the packets
swaps from the backup to primary LSP. However, Resource

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:49:32 UTC from IEEE Xplore.  Restrictions apply. 



MOSTAFAEI et al.: TEL: LOW-LATENCY FAILOVER TRAFFIC ENGINEERING IN DATA PLANE 4707

Fig. 12. Comparison between TEL-C and F10 recirculation FRR primitives under 1 and 2 link failures.

Fig. 13. The 99th percentile stretch for AS3967: TEL-C vs. DDC for 1
and 2 link failures.

Fig. 14. The 99th percentile CDF of steady state stretch for TEL-C vs.
DDC for 1 and 2 link failures.

Reservation Protocol-Traffic Engineering (RSVP-TE) signals
establishing backup LSPs among routers.

Unlike MPLS FRR, TEL-C does not require a complex
signaling mechanism to swap to backup paths. Instead, the
controller in the control plane has an overview of the network
and provides the required forwarding rules for the backup
paths. There is also no need to carry extra labels in the network
for the traffic of failed paths.

E. Comparison With OSFP IP FRR

OSFP IP FRR reduces the reaction time to failure into a
few 10s of milliseconds by proactively computing alternative
paths. If the primary path fails, then it can rapidly switch to
the backup path when the failure is detected. Moreover, OSFP

IP FRR requires signal events to its neighbor by using Interior
Gateway Protocol (IGP) to recompute the paths for all affected
prefixes. Additionally, OSPF Loop-Free Alternate (LFA) FRR
can provide a different level of failure protection depending
on the network topology.

Unlike OSFP IP FRR, TEL-C does not require a signaling
mechanism to swap to backup paths. Instead, the controller
in the control plane has an overview of the network and
updates the required forwarding rules for the backup paths.
Interestingly, TEL-C allows the selection of more factors in
path selection.

VI. APPLYING ON PRACTICAL APPLICATIONS

Modern networking applications demand ultra-low-latency
delay, and link failure can cause many issues. There have
been several network issues during recent years leading to
wide Internet outages in different continents such as Asia [34].
These kinds of outages result in losing hundreds of thou-
sands of dollars for Google [15], affecting thousands of British
Airways airline passengers [35], or disrupting the emergency
network [36].

Each small delay in many networking applications can lead
to a significant drop in business. For example, Akamai in
2017 reported that every 100 milliseconds of delay have a
determinant impact in dropping the customers of online busi-
nesses [37]. Other networking applications like voice have
around 150 milliseconds of tolerable delay, while for gaming
applications, this is about 80 milliseconds [38].

We now explain another practical scenario for big data
applications. Distributed stream processing systems like
Apache Flink [39] receive data from many resources such as
the Internet of Things (IoT) devices, user clicks, and finan-
cial transactions. The intermediate results of running a query
in such systems should be transferred to the central locations
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TABLE II
COMPARISON OF RELATED WORKS

for decision making. The underlying network may fail due to
link failure and the highly time-sensitive data require to be
rerouted. In such applications, each millisecond of delay is
essential for decision making.

In all the above application scenarios, the failure in deliv-
ering traffic can lead to the loss of massive revenues, and
TEL can be used in any application scenarios that demand
low-latency traffic engineering.

VII. RELATED WORK

In this section, we give a summary of different types
of failures that have been proposed on the data plane (see
Section VII-A) and the control plane (see Section VII-B). The
failure on the L2 switch can be detected in legacy networks
that require at least 20 milliseconds [52]. Considering even
20 milliseconds of delay in detecting failure results in los-
ing a considerable amount of traffic while having Tbps of
traffic [52], [53].

A. Data Plane Failure Algorithms

In the data plane, we can detect the failures by analyzing
the control verification flags of TCP/IP protocol of the meta-
data of each packet. A summary of FRR solutions in the
data plane is reported in [54]. For example, the work in [40]
detects the failure by continuously checking the TCP/IP check-
sum verification and monitors the increment of bit error ratio
while decreasing the data rate quality. The work in [41] iden-
tifies the failure by validating the throughput plunging and
increasing data transmission delay. According to [42], find-
ing a failure on the IP and overlay network is categorized
as active and passive solutions. In the former solutions, as
reported in [44], they propose a fast failure detection method
called BFD that achieves based on the live communica-
tion between the neighboring nodes. In the latter solutions,
such as [45], the failure state can be detected based on
data packet delivery that is given to other nodes. In this
case, the neighbors’ nodes can check the packet structure
and confirm the links and required operations. However,

this type of failure detection requires receiving data flow
regularly from the neighbor nodes. Also, the authors in [43]
design a DAG-based algorithm to minimize the number of
entries required on the SDN switches. Besides, it decreases
the local restoration latency for a failed node/link such that
the SDN controller will not be affected. This solution per-
forms only based on the standard features of OpenFlow
and avoids inconsistent forwarding tables during updates.
The authors in [46] design SPIDER, a new failure recov-
ery approach that provides a fully programmable abstraction
and re-routing policies in SDN. SPIDER aims to minimize
the recovery delay and guarantees the failover even when
the controller is not reachable. Besides, the work [55] imple-
ments a fast failover algorithm in OpenFlow to re-route
traffics based on the gathered information from packet head-
ers. This method monitors the packet movement on various
routes. It analyzes them based on multiple traversal network
graph mechanisms, such as depth-first search and breath-
first search. The routing is carried out using failure-carrying
packets [56] algorithm. TEL-D significantly improves
the FCT of flows compared to the state-of-the-art FRR
mechanisms.

B. Control Plane Failure Algorithms

Failure faces several routing and data steering issues in
SDN, minimizing packet losses and increasing transmission
delay. Applying a failure detection mechanism in the control
plane leads to having resilient routing in an Ethernet network.
In [47], the authors designed a tool based on Spanning Tree
Protocol (STP) on the IEEE 802.1D to avoid forwarding loops
while providing necessary restoration capabilities. STP also
guarantees to establish a unique path between any two nodes.
However, it is not equipped to cover failure recovery, and its
convergence speed is prolonged up to 50 seconds [48], which
is not an efficient method for real-time applications in large
networks.

Some failure recovery solutions are based on MPLS, which
can be managed through a data plane. For example, the
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paper [49] utilizes label switching routers to handle the steer-
ing packets along with switches by labeling the packet header.
They design a label distribution protocol to manage the labeled
packets and understand the failure that may happen in the
network. Also, the solution’s extension is tested and val-
idated on the label distribution protocol reported in [50].
Recently, in [51], the authors design two FRR algorithms
managed through a control plane on MPLS. These algorithms
can rapidly index the shortest recovery paths and the shortest
guaranteed-cost path method to decrease the recovery path’s
delay cost in an SDN. Unlike the above techniques, TEL-C
can satisfy the max-min fair allocation. Table II presents a
comparison of approaches. The goal of the first category
is to present the features of solutions applying in the data
plane while the second category does the same for the con-
trol plane. Also, the symbol “�” indicates that the approach
supports the property; Otherwise, we used “×”. Besides, we
classify the operational mode into centralized, decentralized,
and distributed.

VIII. CONCLUSION

This paper presents two FRR mechanisms for programmable
data plane to steer the traffic with a low failover latency in the
failure scenarios. We propose one proactive and one reactive
FRR mechanisms. The first one, TEL-C, calculates the pri-
mary and backup paths in the control plane satisfying max-min
fair allocation and insert the forwarding rules into the network
devices. When failure occurs, the network device can reroute
the traffic according to the backup paths. The second one,
TEL-D, reroutes the traffic in the data plane, making it suit-
able for self-driving programmable networks. In the future, we
plan to extend the TEL-C by considering sophisticated traffic
policies like priority-based traffic engineering. Also, we plan to
extend the TEL-D for load balancing scenarios. Furthermore,
we plan to extend our learning algorithm with many robust
ones such as the max-logit and b-logit [57].
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