
Straggler-aware Observability for Flow Scheduling
Muhamad Rizka Maulana

Eindhoven University of
Technology

Habib Mostafaei
Eindhoven University of

Technology

Nirvana Meratnia
Eindhoven University of

Technology

Abstract

Modern datacenter networks use flow scheduling to reduce
flow completion time (FCT). However, schedulers without
precise flow size information, like QClimb (NSDI 2024) and
PIAS (NSDI 2015), can create stragglers—packets that suf-
fer high queueing delays–undermining scheduling benefits.
Current network monitoring tools find root causes of these
issues but miss detecting affected "victims." In our recent
work [11], we introduce StragFlow, a data plane-based sys-
tem that detects stragglers in realtime at line rate and reports
them to the control plane for analysis. Experiments with real-
world traffic demonstrate StragFlow’s effectiveness across
multiple scheduling algorithms.

CCS Concepts

• Networks → Network measurement; Network per-

formance analysis; Programmable networks; Network

monitoring.

Keywords

Network Measurement; Flow scheduling observability;
ACM Reference Format:

Muhamad Rizka Maulana, Habib Mostafaei, and Nirvana Meratnia.
2025. Straggler-aware Observability for Flow Scheduling. In Applied
Networking Research Workshop (ANRW ’25), July 22, 2025, Madrid,
Spain. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3744200.3744782
1 Background

Stragglers have been widely studied in the systems commu-
nity [7, 8], where they refer to tasks in a job that take signif-
icantly longer to complete than others [3]. Causes include
hardware heterogeneity, resource contention, and device
faults. Stragglers can delay the entire job, degrading per-
formance, especially for small or interactive workloads [3].
Early detection enables mitigation strategies like blacklisting,
speculative execution [7], or task cloning [3], which help
maintain predictable job completion times.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ANRW ’25, Madrid, Spain
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2009-3/2025/07
https://doi.org/10.1145/3744200.3744782

Control plane
Delay register

Straggler counter

Get current
delay c_delay

Hash

Send stragglersUpdate
counter

Flow id

Get previous
delay p_delay

c_delay >
p_delay Yes

No

Forward

Read

Write c_delay

Packet

Figure 1: StragFlow’s detection mechanism.

Definition: We define a straggler as a packet that suffers
higher queueing delay than most other packets in its flow,
thereby increasing flow completion time (FCT). Similar to
task-level stragglers caused by job scheduling, flow-level
stragglers can arise from flow scheduling mechanisms [2,
4, 12], which demote flows to lower-priority queues. These
queues can result in longer delays, causing some packets to
become stragglers and degrading overall flow performance.
Schedulers like PIAS [4] and QClimb [9], which dynamically
adjust priorities based on observed flow behavior without
prior knowledge of exact flow sizes, can inadvertently intro-
duce these stragglers while aiming to reduce flow completion
time (FCT). Thus, we design StragFlow to better analyze
the scheduling behavior of these schedulers.
2 Our Approach

The core of StragFlow’s straggler detection capability is
based on the use of the deq_timedelta metadata provided
by programmable switch hardware. This field records the
time (in nanoseconds) that each packet spends waiting in
its queue. By monitoring this queueing delay, StragFlow
can identify packets that experience unusually high delays–
referred to as stragglers–and flags them for further analysis.

StragFlow operates entirely at switch egress due to avail-
ability of deq_timedelta in the egress pipeline. For each
packet, it hashes the flow ID to index into a register stor-
ing the previous per-flow delay (p_delay). The current delay
(c_delay), from deq_timedelta, is compared to p_delay. If
c_delay exceeds p_delay, the packet is marked as a strag-
gler, the delay register is updated, and a per-flow counter
is incremented. While this method is lightweight and adap-
tive, it may flag many packets as stragglers during natural
delay fluctuations. To improve accuracy, StragFlow can
periodically reset or decay p_delay, ensuring it reflects re-
cent network conditions. Straggler events are pushed to the
control plane, providing realtime visibility into emerging
queueing behaviors at packet-level granularity.
Detecting stragglers. Defining when a packet becomes a
straggler is non-trivial due to fluctuating network condi-
tions and diverse queueing behaviors across priority queues.

https://orcid.org/0009-0005-1299-5425
https://orcid.org/0000-0001-8282-1571
https://orcid.org/0000-0002-8379-770X
https://doi.org/10.1145/3744200.3744782
https://doi.org/10.1145/3744200.3744782
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3744200.3744782


ANRW ’25, July 22, 2025, Madrid, Spain Muhamad Rizka Maulana, Habib Mostafaei, and Nirvana Meratnia

We consider three practical approaches: (i) Threshold-based:
The simplest approach uses a static delay threshold. Packets
exceeding this are labeled as stragglers. However, a single
threshold may not generalize across priority queues, which
can have different baseline delays. (ii) Moving average: This
approach tracks delay trends per flow using low-pass filters
(LPF). A packet is flagged if its delay exceeds the current av-
erage. While adaptive, it can be insensitive to sudden spikes
or drift under gradually increasing delays, causing late or
missed detection. (iii) Previous delay comparison:We compare
the current packet’s delay to a per-flow reference delay, main-
tained as the maximum observed delay within a recent time
window or epoch. If the current delay exceeds this reference,
the packet is marked as a straggler, and the record is updated.
We adopt this method for its simplicity, adaptiveness, and
responsiveness to sudden delay increases without requiring
global thresholds or smoothing. To improve adaptivity, the
reference delay can be periodically reset or decayed, allow-
ing the system to adjust to changing network conditions and
avoid desensitization due to outdated congestion episodes.
Counting stragglers. To meet line-rate processing and
memory constraints in the data plane, we use compact data
structures. While advanced sketches like ElasticSketch [13]
and Universal Sketch [10] offer specialized features, such as
traffic adaptability, hierarchical accuracy, or general-purpose
measurement, we opt for the Count-Min Sketch (CMS) [6]
due to its simplicity and suitability for our use case. We use
CMS for the Straggler counter in Figure 1. When a packet
is identified as a straggler, its flow ID is hashed to locate and
update the corresponding counters. Non-straggler packets
are not counted. This approach enables efficient tracking
of straggler occurrences per flow, using minimal resources,
while ensuring all packets are forwarded normally based on
existing rules.
Reporting stragglers. Straggler reports can use push or pull
mechanisms. In our approach, we use a push-based reporting
method, where the data plane sends digests to the control
plane. To prevent overload, we implement threshold-based
reporting: straggler information is aggregated by flow and
reported only when a specified count threshold is reached.
This method effectively balances message overhead, flow
coverage, and granularity of straggler detection.

3 Evaluation Results

We implemented StragFlow in P4 (740 LOC) and evaluated
it on a Netberg Aurora 710 switch with Intel Tofino. We
use FastClick [5] to replay CAIDA backbone traces (30M
IPv4, 1.2M IPv6 packets) [1] and assessed straggler detec-
tion. In our evaluation, we set the straggler reporting thresh-
old to two packets, enabling detection of stragglers from
both large and small flows, even those with only a few pack-
ets. StragFlow uses 65K 16-bit counters in its Straggler

1 2 3 4 5 6 7 8
Queue ID

0

2500

5000

7500

10000

12500

15000

N
um

be
ro

fs
tra

gg
le

rs 10892

3060
2254

782 506 394 266 870

(a) Balanced

1 2 3 4 5 6 7 8
Queue ID

0

2500

5000

7500

10000

N
um

be
ro

fs
tra

gg
le

rs

6862

2744 2616

1228
698 304 226

1310

(b) Uncongested

Figure 2: Straggler counts observed under PIAS sched-

uling with eight priority queues.

counter structure with two hash functions, balancing mem-
ory usage and accuracy. For delay tracking, it allocates 65K
32-bit entries in the Delay register, capturing queueing
delays up to 4.29 seconds. We evaluate StragFlow under
two conditions: an uncongested link (1.2 Gbps egress, 1 Gbps
traffic) and a balanced link (1 Gbps in both directions), mea-
suring responsiveness to queueing dynamics.
We compared the scheduling behavior of FIFO and PIAS

under both balanced and uncongested scenarios. In the bal-
anced setting, PIAS resulted in 19,024 stragglers, while FIFO
produced 30,034, indicating a reduction of approximately
37%. In the uncongested scenario, PIAS yielded 15,988 strag-
glers compared to 29,046 for FIFO. Overall, PIAS consistently
reduces the number of stragglers compared to FIFO, partic-
ularly in the balanced scenario. This improvement can be
attributed to PIAS’s use of strict priority queues, which allow
shorter flows to complete more quickly and avoid excessive
queuing delays.
We now analyze PIAS behavior in more detail. In Fig-

ures 2a–2b, queue 1 consistently shows the highest number
of stragglers. This is expected, as PIAS assigns all flows to
the highest priority queue initially. With a 100-packet de-
motion threshold, queue 1 retains flows smaller than this
size—roughly 97% of all flows—making it the busiest and
most prone to straggler events. Straggler counts decrease
across lower-priority queues since only large flows are de-
moted. Queues 4 through 7 see minimal straggler activity.
Furthermore, we observe more stragglers in the balanced link
setting than the uncongested one, due to reduced egress ca-
pacity. These results highlight that even in well-provisioned
networks, queueing delays can impact small flows, which
StragFlow can help detect at packet granularity.

4 Future Work

Our current design focuses on per-flow straggler detection
for network flows in a single switch. As future work, we plan
to extend StragFlow to support multi-hop straggler correla-
tion, enabling end-to-end visibility across multiple switches.
Furthermore, integrating StragFlow with dynamic sched-
uling or congestion control mechanisms could enable real-
time mitigation strategies triggered by observed straggler
patterns.



Straggler-aware Observability for Flow Scheduling ANRW ’25, July 22, 2025, Madrid, Spain

References

[1] 2016. The CAIDA UCSD Anonymized Internet Traces [February 2016].
https://www.caida.org/catalog/datasets/passive_dataset/

[2] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker. 2013. pFabric: minimal
near-optimal datacenter transport (SIGCOMM ’13).

[3] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica.
2013. Effective Straggler Mitigation: Attack of the Clones. In 10th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13). 185–198.

[4] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang.
2015. Information-Agnostic Flow Scheduling for Commodity Data
Centers. In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15). Oakland, CA, 455–468.

[5] Tom Barbette, Cyril Soldani, and Laurent Mathy. 2015. Fast userspace
packet processing. In 2015 ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS). 5–16.

[6] Graham Cormode and S. Muthukrishnan. 2005. An improved data
stream summary: the count-min sketch and its applications. J. Algo-
rithms (April 2005), 58–75.

[7] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data
Processing on Large Clusters. In 6th Symposium on Operating Systems
Design & Implementation (OSDI 04).

[8] Sukhpal Singh Gill, Xue Ouyang, and Peter Garraghan. 2020. Tails in
the cloud: a survey and taxonomy of straggler management within
large-scale cloud data centres. J. Supercomput. 76, 12 (Dec. 2020),
10050–10089.

[9] Wenxin Li, Xin He, Yuan Liu, Keqiu Li, Kai Chen, Zhao Ge, Zewei
Guan, Heng Qi, Song Zhang, and Guyue Liu. 2024. Flow Scheduling
with Imprecise Knowledge. In 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24).

[10] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. 2016. One Sketch to Rule Them All: Rethinking
Network Flow Monitoring with UnivMon. In Proceedings of the 2016
ACM SIGCOMM Conference (Florianopolis, Brazil) (SIGCOMM ’16).
101–114.

[11] Riz Maulana, Habib Mostafaei, and Nirvana Meratnia. 2025. Detect-
ing Stragglers in Programmable Data Plane. In 2025 IFIP Networking
Conference. IEEE Press, 1–9.

[12] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh,
Sharad Chole, Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan,
Tom Edsall, Sachin Katti, and Nick McKeown. 2016. Programmable
Packet Scheduling at Line Rate. In SIGCOMM ’16. 44–57.

[13] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou,
Rui Miao, Xiaoming Li, and Steve Uhlig. 2018. Elastic sketch: adaptive
and fast network-wide measurements (SIGCOMM ’18). 561–575.

https://www.caida.org/catalog/datasets/passive_dataset/

	Abstract
	1 Background
	2 Our Approach
	3 Evaluation Results
	4 Future Work
	References

