
Future Generation Computer Systems 136 (2022) 270–281

H
a

b

c

d
e
d
a
s
a
l
s
l
t
g
n

s

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Network-awareworker placement for wide-area streaming analytics✩

abib Mostafaei a,∗, Shafi Afridi b, Jemal Abawajy c

Eindhoven University of Technology, The Netherlands
Technische Universität Berlin, Germany
Deakin University, Australia

a r t i c l e i n f o

Article history:
Received 18 May 2021
Received in revised form 2 June 2022
Accepted 10 June 2022
Available online 18 June 2022

Keywords:
Internet of Things (IoT)
Worker node placement
Wide-area stream analytics
Stream processing
Simple additive weighting
Wide Area Network (WAN)

a b s t r a c t

Many organizations leverage Distributed Stream processing systems (DPSs) to get insights from the
data generated by different users/devices, e.g., the Internet of Things (IoT) devices or user clicks on
a website, on geographically distributed datacenters. The worker nodes in such environments are
connected through Wide Area Network (WAN) links with various delays and bandwidth. Therefore,
minimizing the execution latency of a task on the worker nodes while using the links with enough
bandwidth and lower cost to steer the traffic of the applications is a challenging task. In this paper, we
formulate the worker node placement for a geo-distributed DSPs network as a multi-criteria decision-
making problem. Then, we propose an additive weighting-based approach to solve it. The users can
prioritize the worker node placement according to the network-relevant parameters. We also propose
a framework that can be integrated with the current DPSs to execute the tasks. We test our placement
approach on three widely used stream processing systems, i.e., Apache Spark, Apache Storm, and
Apache Flink, on three custom graphs adopted from the real cloud providers. We run the streaming
query of the Yahoo! streaming benchmark on these three DPSs. The experimental results show that
our approach improves the performance of Spark up to 2.2x–7.2x, Storm up to 1.2x–3.4x, and Flink
up to 1.4x–3.3x compared with other placement approaches, which makes our framework useful for
use in practical environments.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Emerging applications running on the Internet of Things (IoT)
evices, social networks, or user-clicks on websites typically gen-
rate a massive amount of continuous stream of raw data from
istributed geographical locations. Organizations need to analyze
nd mine these data to obtain insights and valuable intelligence
uch as trend detection in social networks in real-time. These
pplications normally have stringent requirements ranging from
ow-latency to high bandwidth. Therefore, processing this mas-
ive amount of streaming data in a single location within a
imited timeframe is not practically possible. As a result, dis-
ributed stream processing systems (DSPs) composed of geo-
raphically distributed (geo-distributed) networks that commu-
icate via WAN have recently become a popular choice to run

✩ The preliminary version of this paper, titled ‘‘SNR: Network-aware Geo-
Distributed Stream Analytics’’, authored by H. Mostafaei, S. Afridi, and J. H.
Abawajy, was published in the IEEE/ACM 21st International Symposium on
Cluster, Cloud and Internet Computing (NEAC workshop) (Mostafaei et al.
2021) [1]. Part of this work has been conducted while Habib Mostafaei was
with Technische Universität Berlin.

∗ Corresponding author.
E-mail addresses: h.mostafaei@tue.nl (H. Mostafaei),

afridi@inet.tu-berlin.de (S. Afridi), jemal.abawajy@deakin.edu.au (J. Abawajy).
ttps://doi.org/10.1016/j.future.2022.06.009
167-739X/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
these applications [2]. The main idea of geo-distributed stream
data processing systems is to push the computations to the edge
of the network close to the sources of the streaming data. This
approach provides several benefits that include privacy preser-
vation and cost-saving due to the minimization of data transfer
overhead.

Although geo-distributed cluster networks have the capacity
to handle stream data processing, stringent QoS requirements
of the stream data processing applications raise fundamental re-
source management and scheduling challenge. Currently, various
systems such as Apache Spark [3], Apache Storm [4], and Apache
Flink [5] are used for processing streaming data. However, these
systems are designed to process the queries at a single location
on a cluster rather than on geo-distributed cluster networks.

There are several attempts to address the stream data process-
ing in geo-distributed cluster networks [2,6,7]. The techniques in
such solutions are mostly applied for batch scenarios in which
the input data is available prior to query execution. Although the
approaches proposed in existing works [8–11] do not assume that
the data size and the rate are not known in advance, these solu-
tions focus on different aspects such as links delay, bandwidth,
and cost of running a task in different datacenters. For example,
the work in [12] claims that the link cost should have higher
priority than the delay and bandwidth in a multi datacenters
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2022.06.009
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.06.009&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:h.mostafaei@tue.nl
mailto:safridi@inet.tu-berlin.de
mailto:jemal.abawajy@deakin.edu.au
https://doi.org/10.1016/j.future.2022.06.009
http://creativecommons.org/licenses/by/4.0/

H. Mostafaei, S. Afridi and J. Abawajy Future Generation Computer Systems 136 (2022) 270–281

e
o
t
p

p
S
H
g
a
a
f
d
p
m
b
f
c
c
o
o
p
i
A
p
p

t
a
t
i

2

2

t
a
s
l
c
t
W
(
s
u

a
o
n

nvironment. The reason for such a claim is due to the amount
f data transferred using high-cost links. Nevertheless, none of
hese solutions offer the flexibility in prioritizing various network
arameters in placing the workers on a geo-distributed cluster.
In this paper we extend our work in [1] and address the

lacement of worker nodes on geo-distributed cluster networks.
pecifically, we attempt to answer the following questions: (i)
ow can we prioritize network metrics to efficiently run a task on
eo-distributed cluster networks?; and (ii) What is the trade-off
mong different network parameters in placing worker nodes in
multi-cloud environment? To answer the above questions, we

irst formulate the problem of placement of worker nodes on geo-
istributed cluster network as a multi-criteria decision-making
roblem and use the Simple Additive Weighting (SAW) [13]
ethod to solve it. We call the proposed approach a SAW-
ased Node Ranking (SNR) algorithm. The main goal of SNR is to
ind the best placement of the worker nodes on geo-distributed
luster networks by considering multiple network criteria. We
heck the different impacts of SNR on the placing nodes, and the
btained results show that the internode delays of our algorithm
n average are 2.4x less than the current default algorithm. To
erform the real-world experiments, we use the Yahoo! stream-
ng benchmark [14] on a cluster of 11 VMs running Apache Spark,
pache Storm, and Apache Flink. Our results show the significant
erformance improvement of SNR compared with the default
lacement approach.
The contribution of our work can be summarized as follows:

• We develop SNR (worker node placement on geo-distributed
cluster network) that considers the most significant net-
work relevant parameters when placing the workers in a
geo-distributed cluster network;

• We study the trade-off among the relevant parameters of
worker selection;

• We perform real-world experiments to evaluate the perfor-
mance of SNR on a set of custom and all networks taken
from TopologyZoo [15].

• We report that SNR improves the execution latency of Apache
up to 2.2x–7.2x, Apache Storm up to 1.2x–3.4x, and Apache
Flink up to 1.4x–3.3x compared with the default placement
approach.

The rest of the paper is organized as follows. Section 2 states
he system model and problem formulation. The detail of the SNR
lgorithm comes in Section 3. Section 4 details the evaluation of
he SNR and reports the obtained results. The related works come
n Sections 5 and 6 concludes the paper.

. System model and problem statement

.1. System model

We consider scenarios in which several geographically dis-
ributed datacenters (DCs) form a network. Fig. 1 shows an ex-
mple scenario with five DCs, i.e., DC1 to DC5, connected through
everal network devices such as routers or switches using WAN
inks. Each DC in Fig. 1 consists of a set of compute slots, i.e., CPU
ores and memory, with diverse uplink and downlink for data
ransmission depending on the amount of investment to build.
e rely on virtualization techniques to create Virtual Machines

VMs) to run DSPs on each DC. We now explain how wide-area
tream processing can be executed on a set of DCs in our model
sing DSPs.
The DSPs such as Apache Storm [4] and Apache Flink [5] have

master–slave architecture in which the master node is in charge
f executing user-submitted tasks on a set of slave nodes. We
eed to deploy the slave nodes of DSPs on different DCs to run
271
Fig. 1. A geo-distributed stream-processing system spanning over five
datacenters (DCs).

Fig. 2. A worker node with three task slots.

a streaming task in a geo-distributed setting. We leverage the
available VMs on each DC to execute the functionality of the slave
nodes of each DSP — we call these available VMs as the worker
nodes. Fig. 2 shows an example worker node with three task slots.
For instance, task slot#1 can run on a data stream to identify
the security issues in real-time, while task slot#2 can execute
another task such as top k event detection. Therefore, assigning
tasks to each task slot depends on the application use cases.
Other example use cases of such platforms are fraud detection
by the credit card companies and ad-hoc analysis of live data in
the transportation automobile. E-commerce industries such as Al-
ibaba and Zalando use streaming platforms for real-time analysis
of user data to optimize search and end-user suggestions [16].
We call the network of worker nodes a cluster for the scope of
our work.

Modern DSPs such as Apache Flink manages the compute
resources of each worker node using their dedicated resource
managers. Each worker node is a Java Virtual Machine (JVM)
process and can execute a set of tasks using a set of separate
threads. We can control the number of executable tasks on a
worker node by task slots. Each task slot represents a fixed
amount of resources. The worker node shares its memory among
all its task slots. For example, the worker node in Fig. 2 can share
1/3 of its memory among task slot#1, task slot#2, and task slot#3.
Each task slot can also run a separate instance of a streaming task
without interfering with the others.

Processing model. We now explain how data processing hap-
pens in a streaming scenario. The data processing in streaming
scenarios runs for an infinite time and requires the following
steps:

• Ingesting a sequence of data,

H. Mostafaei, S. Afridi and J. Abawajy Future Generation Computer Systems 136 (2022) 270–281

a
s
s
d
t

t
t
o
R
p
r
i
c

f
v
r
i
t
o
t
f
c
g
m
d

u
m
n
d
d
d
a

t
c
c
l
i
t
t
t

Fig. 3. An example DAG of a streaming query.

• Updating metrics and reports, and
• Summarizing statistics in response to each arriving data

record.

This kind of processing is better suited for real-time monitor-
ing and response functions. The input data comes as a stream,
i.e., continuous data records in small sizes, from different sources.
Examples of data sources are sensors, user clicks in a website, or
mobile users. The size of incoming data is not known in advance
since it depends on the application scenarios and the number
of sources generating data streams. Data analytics in stream
processing includes tasks like finding correlations or aggregations
among the data or filtering data according to the application
needs to state a few examples.

Herein, we provide an example streaming task in the form of
DAG to explain our streaming query. Fig. 3 shows the DAG of
treaming query in which it receives the incoming data from a
ource. The query filters the incoming data according to the user-
efined values and joins the obtained results. The final results are
hen pushed to a sink for other purposes.

One of the goals of wide-area stream processing is to process
he data close to the source for several reasons such as saving
he bandwidth and cost or privacy of data. An example constraint
n data privacy is the European Union General Data Protection
egulation (GDPR) [17]. It obligates the user’s consent for data
rocessing or exchanging with third-party systems. The same
ule applies if the data should be processed or stored in the
nfrastructure of other countries. In such scenarios, data privacy
annot be guaranteed.
In our model, the global manager runs the tasks across dif-

erent DCs depending on the enterprise requirements. It has a
iew of the available resources and decides where a task should
un. The global manager is located in the central datacenter that
nteracts with the data managers located at each edge datacen-
er [7]. This is a realistic assumption since with the adoption
f Software-Defined Networking (SDN) [18], the controller has
he global view of the network and can provide us enough in-
ormation for decision making. Having a single global manager
an be a point of failure in this model, and leveraging multiple
lobal managers can mitigate this problem. However, the global
anager is not a performance bottleneck since the worker nodes
o data processing.
The global manager receives the streaming tasks from the

sers and executes them on the DCs. We assume that the global
anager runs the same streaming task on all DCs. However, the
umber of required task slots to process the input data can be
ifferent, since it depends on the amount of incoming streaming
ata. The global manager can decide to assign the task slots
epending on the processing power of each task slot and the
mount of input data.
The task slots of each DC are connected through WAN links

hat have different properties such as bandwidth, delay, and
ost. For example, the uplink and downlink bandwidths of a link
an be different because different applications share the same
inks [6]. The main advantage of having a global manager is that
t can periodically query the underlying network infrastructure
o obtain updated information on the status of links and update
he tasks execution plan accordingly. This way of running the
asks leads to minimizing query execution time. However, using
 n

272
a global manager can be a single point of failure for the whole
task execution since it is in charge of running tasks. But, other
architectures such as having multiple global managers or even a
manager for each WAN can be considered.

In this model, the worker nodes in each DC process the in-
coming input data and produce the intermediate results. The
intermediate results are aggregated in the central DC that re-
ceives data through WAN links. We now provide an example
word-count scenario to explain how this works. The worker
nodes in each DC count the number of unique words indepen-
dently and transfer the results of the counts to the central DC.
The central DC aggregates all the word counts over a specific time
window and reports them as the final results to the end-user.

2.2. Problem statement

The main objective is to minimize the execution latency and
cost of streaming tasks while obeying the bandwidth constraints
in placing the workers of a cluster in a geo-distributed environ-
ment. The streaming tasks run for an infinite time. We consider
the network relevant parameters such as bandwidth, delay, and
cost when placing the tasks for execution. The main reason to
consider the network-related parameters is that the WAN links
properties dictate the overall query execution in the streaming
scenarios. Furthermore, in contrast to bath processing tasks that
have to process a large amount of data, in streaming tasks, the
amount of data in a specific time window plays a determinant
role in the execution time. For example, consider a windowing
task that runs over several DCs, and the input data rate is very
few. This amount of data can be processed without restrictions
on the VMs since the incoming data rate is too low. However, the
overall query execution time is the time that the last input data
on the slowest link is finished. Therefore, WAN links dictate the
overall query execution, and we consider this factor as our goal.

We consider a network topology of G = (V , E) in which V is
the set of worker nodes, and E is the set of edges (links) con-
necting the worker nodes. Each worker has a set of available task
slots to execute tasks. We assume that the workers already exist
and ready for task execution. Each link in G has three different
parameters, namely, bandwidth, delay, and cost. The main goal
is to enable the users to select a set of worker nodes in the
network according to the given priority to the network-related
parameters.1

Delay. The internode delays in a geo-distributed cluster are dif-
ferent from those in a single cluster. The delay can vary from
10 s to 100 s of milliseconds depending on the locations of the
compute slots [19]. Therefore, link delay plays a determinant role
in task execution, especially for delay-sensitive applications. For
such kinds of applications, every millisecond of latency can have
a huge economical impact on enterprises. For example, Akamai
in 2017 reported that every 100 ms of delay have a determi-
nant impact in dropping the customers of online businesses [20].
Therefore, one of our goals is to select a subset of computing slots
in such a way that the sum of internode delays is minimized.
Mathematically,

minimize
n∑

x=1

T y
x (1)

subject to T y
x > 0, ∀(x, y) ∈ G′ and x ̸= y,

where T y
x is the link delay in milliseconds (ms) crossing from node

x to y, and n is the number of chosen worker nodes from graph G.

1 We use the available task slots on a VM as the same meaning of the worker
odes to avoid any confusion.

H. Mostafaei, S. Afridi and J. Abawajy Future Generation Computer Systems 136 (2022) 270–281

W
G

C
s

t
T
f∑
e assume that G′ is the sub-graph of the chosen nodes in graph
.

ost. We model the cost as follows. Let Cy
x be the data transmis-

ion cost from worker x to y through the link among them. The
total transmission cost can be computed as follows.

minimize
n∑

x=1

Cy
x (2)

subject to Cy
x > 0, ∀(x, y) ∈ G′ and x ̸= y.

We consider the cost as the cost of steering 1 GB of data traffic
over a link in USD ($). The goal is to minimize the sum of the cost
of G′.

Bandwidth. We model the network traffic as follows. Let By
x be

he available bandwidth of a link in Mbps from worker x and y.
he total generated traffic on link (x, y) ∈ E can be computed as
ollows.

By
x, ∀(x, y) ∈ E ′ and x ̸= y, (3)

where E ′ is the set of edges in G′. We assume that multiple tasks
can be executed on the available task slots on a worker. There-
fore, each task generates data traffic and consumes a portion of
the available bandwidth between nodes x and y. The goal is to
maximize the minimum available bandwidth among the selected
nodes in G′. Consider a scenario in which we have several worker
nodes distributed on a geo-distributed network. In this case, there
are multiple hops between two nodes in the graph with diverse
parameters. Therefore, the link with the lowest bandwidth de-
termines the amount of traffic that can be sent through that
path.

3. SNR algorithm

In this section, we state how SNR selects the task slots by
considering multiple network-based criteria. We also explain a
running example of SNR in placing worker nodes in the cluster
network.

3.1. SNR algorithm

We use different criteria in the node selection step of the SNR
algorithm. This problem is known as the multi-objective problem,
and we use the Simple Additive Weighting (SAW) method to
transform the problem into a single objective one [21]. The SAW
method is a simple and popular technique to make a decision on
a set of attributes for each alternative. We explain the detail of
SNR as follows.

Let E be a set of links and m be the set of decision criteria
for each link in G. Here, we consider the available bandwidth,
delay, and cost as the decision criteria, i.e., |m| = 3. We prefer
the highest value for the available bandwidth. While for the delay,
and cost the lowest values are better. Let assume that wk is the
weight of importance for each criterion.

Algorithm 1 presents the pseudo-code of the SNR algorithm. In
this algorithm, we first normalize the network-relevant param-
eters of each connected link to a node in the graph. Then, we
compute the rank of each node to select a node in each step of
the algorithm. The algorithm is general-purpose and can be used
to select a subset of task slots available on the worker nodes.

First node selection. The SNR algorithm starts by selecting the
first node on a graph. Therefore, we first normalize the criteria

based on the network-related parameters of neighbors of each

273
Algorithm 1: The SNR algorithm
input : Network graph G, links bandwidth, delay, cost ,

number of worker nodes, priority of each
parameter

output: A set of nodes W

1 W = ∅ /* The set of worker nodes */
/* We compute the average value of each

parameter and normalize them. */
2 for each x ∈ G do
3 N=G.getNeighbors(x)
4 Lsum = 0, BWsum = 0, Csum = 0
5 for y ∈ N do
6 BWsum += By

x

7 Lsum += T y
x

8 Csum += Cy
x

9 end
10 normalize the parameters of each node using Eq. (4)
11 end
12 x = firstNode(G)
13 W = W

⋃
x

14 while |W | < t do
/* We look for the neighbors of x to add the
next node to W */

15 for y ∈ x.Neighbors do
16 find maximum value of each parameter
17 end
18 for y ∈ N do
19 apply Eq. (6)
20 end
21 find rank using Eq. (5)
22 β=get the neighbor with the highest rank
23 W = W

⋃
β

24 x = β

25 end

node using Eq. (4). To do so, we take the average of the available
bandwidth of all connected links to a node and divide it over
the maximum available bandwidth. Similar to the bandwidth,
SNR computes the average link delays and costs. Then, it divides
the averaged values into their minimum values. This procedure
executes once when SNR selects the first node. We normalize the
values of attributes of each node x in graph G as follows.

ψx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
e=1 exy
n

max(exy)
, bandwidth

min(exy)∑n
e=1 exy
n

, delay and cost,

(4)

where n is the number of neighbors of a node and exy is the edge
from node x to y. This equation returns the normalized value ψx
for the entire nodes of the graph. Now, we assign the weight for
each criterion of a link connected to node x according to the user
needs. Mathematically,

Rnode =

∑
ψxwk, for x = 1, . . . , n and k = 1, 2, 3, (5)

where Rnode is the rank of each node in the graph G, n is the
number of neighbors of node x, and wk is the priority weight
of each attribute, i.e., bandwidth, latency, and cost. Each wk has
a value in the range (0,1), and the sum of them is equal to 1.
We select the node with the highest rank as the first node. We

H. Mostafaei, S. Afridi and J. Abawajy Future Generation Computer Systems 136 (2022) 270–281

c
t
s
f

olocate the master and the first worker node of the cluster on
he first node. We use the master node to submit the query to a
et of workers/clients. Algorithm 2 shows the pseudo-code of the
irst node selection of the SNR approach.

Algorithm 2: Find the first node
input : Network graph G , bandwidth, delay, and cost of

each link
output: A node with highest rank (xbest)

1 Function firstNode(G):
2 tmp=∅
3 for each x ∈ G do
4 for y ∈ N do
5 BWmax = maxBandwidth(x,y)
6 Lmin = minLatency(x,y)
7 Cmin = minCost(x,y)
8 end
9 for y ∈ N do

10 EBW = w1 ·
Byx

BWmax

11 EL = w2 ·
Lmin
Tyx

12 EC = w3 ·
Cmin
Cy
x

13 end
14 find rank using Eq. (5)
15 tmp= tmp

⋃
x

16 end
17 xbest = ∅
18 Rtmp = 0
19 for x ∈ tmp do

/* Rx is the rank node x. */
20 if Rx > Rtmp then
21 Rtmp = Rx
22 xbest = x
23 end
24 end
25 return xbest
26 End Function

Node selection. After selecting the first node, we use the neigh-
bor nodes of this node to add the next node to our subset of
worker nodes. To do so, we normalize the available bandwidth,
delay, and cost of the links that are connected to the current node
using Eq. (6). Then, we apply Eq. (5) by replacing the ψx with πx
to rank the neighbors of the current node. The neighbor with the
highest rank will be selected as the next node, and this procedure
continues until the desired number of worker nodes has been
chosen.

πx =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑n
e=1 exy

max(exy)
, bandwidth

min(exy)∑n
e=1 exy

, delay and cost.

(6)

Note that we remove the selected node from the available
nodes list while using Eq. (5). This mechanism speeds up the node
selection step of the SNR algorithm due to the reduction in the
search space.

Time complexity. We analyze the time complexity of SNR in
more detail. First, the algorithm needs to find the rank of each
node for the first node selection. This function needs k × N
iteration for the execution where k is a constant and equals to the
number of neighbors for each node and N is the number of nodes
in the graph. Therefore, this function requires O(N) to complete
274
the execution. Lines 14–25 of Algorithm 1 needs t×N to finish in
which t is the number of worker nodes and N is the number of
nodes in the graph. All in all, Algorithm 1 has the time complexity
of O(N) + O(N).

Connectivity of the chosen worker nodes. After selecting a
subset of worker nodes by SNR from the network graph, we
have a connected sub-graph. The reason to have the connectivity
among the chosen nodes comes from the nature of the SNR node
selection phase. We prove the connectivity of the chosen nodes
in Theorem 1 as follows.

Theorem 1. Let G′ be a sub-graph of graph G, then G′ is a connected
graph.

Proof. To prove the connectivity of G′, we explain how the nodes
are selected. Suppose that SNR selects node x from graph G in the
first node selection phase. In the node selection phase, SNR adds a
node to the sub-graph G′ by using the neighbors of the first node.
Then, the subsequent nodes are selected using the neighbors of
currently selected nodes. This property makes the final sub-graph
connected. □

Measuring the impact of node selection. To measure the impact
of the node selection phase, we use the chosen nodes in the sub-
graph. To do so, we take the shortest path from one node to
other nodes to calculate the average inter-node delays, the maxi-
mum available bandwidth, and the sum of the data transmission
cost. We perform the computations for the cases that there are
multiple hops among the nodes as follows.

• Average inter-node delays: if a node such as x is in a few
hops distance from another node like y in the chosen sub-
graph, we take the sum of delays of different hops to use
the delay of node x to node y. We take the average inter-
node delay among all the nodes in the chosen sub-graph
after computing the inter-node delay for each pair of nodes.

• Maximum available inter-node bandwidth: if there mul-
tiple hops between node x and node y in the chosen sub-
graph, we take the minimum available bandwidth of dif-
ferent hops to use the maximum available bandwidth from
node x to node y. We do this procedure for all the nodes
in the chosen sub-graph and take the minimum available
bandwidth as the maximum available bandwidth of SNR.

• Sum of inter-node cost: if there multiple hops between
node x and node y in the chosen sub-graph, we take the sum
of different hops as the cost from node x to node y. We do
this procedure for all the nodes in the chosen sub-graph and
take the sum of all paths among different nodes as the sum
of cost of SNR.

3.2. SNR orchestrator

We develop an orchestrator to integrate SNR with the current
DSPs, i.e., Storm, Spark, and Flink. Fig. 4 shows the internal archi-
tecture of SNR. To apply to the worker node selection algorithm,
we need to have the network topology information such as the
number of nodes, links, and the properties of each link. This
information provides the required input for the worker node
selection step. Then, the orchestrator receives the desired weight
of each networking parameter, i.e., bandwidth, latency, and cost,
from the user to apply the coefficient of the parameters as well
as the required number of worker nodes. SNR applies the node
selection phase to select the required number of worker nodes.
At the end of this phase, we have a list of worker nodes from
the network topology that should have been started to run the

desired streaming query.

H. Mostafaei, S. Afridi and J. Abawajy Future Generation Computer Systems 136 (2022) 270–281

w
w
d
g
n

n
T
w
r
v
I
d
w
i
p

Fig. 4. The internal architecture of SNR orchestrator.

After the worker node selection procedure, we have a list of
orker nodes to be started by SNR for the query execution but
e need to install a set of forwarding rules on top of the network
evices to steer the network traffic among them. Therefore, SNR
enerates the required IPv4 forwarding rules to install on the
etwork devices among the worker nodes.
To execute the given streaming tasks on the chosen worker

odes, SNR needs the directory of each DSP on all worker nodes.
his information is mandatory since the only way to start the
orker nodes is to have access to the right directory that the DPS
esides on each system. The orchestrator uses the daemons pro-
ided by each DSP to start either the master or the worker nodes.
t also sets all the desired parameters on each DPS using the pre-
efined tunable parameter file for each DPS. For example, if the
orker nodes of Apache Flink have the capacity to run multiple

nstances of the same task, we set the parallelism.default
arameter in flink.yaml file to the desired value. There is an

equivalent parameter in Apache Storm and Apache Spark for the
same purpose. Then, the SNR orchestrator submits the received
streaming tasks to the chosen worker nodes for execution.

3.3. Running example for SNR

In this section, we explain our SNR method in selecting the
worker nodes by using an example. Fig. 5 depicts a network graph
of 6 nodes. Each edge in this graph has three network-related
parameters, namely, the link bandwidth in Mbps, the link latency
in milliseconds, and the link cost as the cost of transferring 1 GB
of data over that link in $. We consider the Round-Trip Time (RTT)
delay as the link delay in this graph.

First node selection. To select the first node from the graph
in SNR, we compute the normalized value of all nodes in the
graph. In this example, we have 6 nodes, and Table 1 indicates
the normalized value for the bandwidth, latency, and cost of each
edge connected to that node. We compute these values using
the same parameters on each edge in Eq. (4). SNR computes the
weight of each edge in the graph using the normalized values. We
apply Eq. (5) and select the maximum value as the highest rank.
SNR selects the corresponding node to that highest rank link as
275
Fig. 5. An example graph with six nodes.

Table 1
The normalized values for each node and their corresponding rank in first node
selection step of SNR.
Node Latency BW Cost Ex
Node 1 0.90 1.00 0.68 2.57
Node 2 1.00 0.60 0.88 2.48
Node 3 1.00 0.88 0.87 2.75
Node 4 0.90 0.69 0.98 2.57
Node 5 0.97 0.68 1.00 2.65
Node 6 0.97 0.75 0.83 2.55

Table 2
The normalized values for each node with their neighbors rank in SNR.
Node Normalized values Ex To

BW Latency Cost

Node 1
1.00 1.00 0.81 2.81 Node 2
0.89 0.83 1.00 2.72 Node 3
0.89 0.89 0.86 2.64 Node 6

Node 2

0.90 0.67 1.00 2.57 Node 1
1.00 0.85 0.74 2.59 Node 3
0.80 0.72 0.46 1.98 Node 4
1.00 1.00 0.66 2.66 Node 6

Node 3

0.80 0.53 0.68 2.01 Node 1
1.00 0.80 0.40 2.21 Node 2
0.90 1.00 1.00 2.90 Node 4
1.00 0.81 0.38 2.19 Node 5

Node 4
0.89 0.68 0.25 1.82 Node 2
1.00 1.00 1.00 3.00 Node 3
1.00 0.89 0.45 2.34 Node 5

Node 5 1.00 1.00 1.00 3.00 Node 3
0.89 0.52 0.59 1.99 Node 4

Node 6 0.80 0.60 1.00 2.40 Node 1
1.00 1.00 0.62 2.62 Node 2

the first node. According to the example graph in Fig. 5, the SNR
selects node number 3 as the first node.

Node selection. We assume that our goal is to select three nodes
for the cluster and all three networking parameters have the same
priority for the placement. After choosing the first node, we apply
a similar mechanism for the remaining nodes in the graph until
we reach the desired number of nodes for the cluster. According
to our example, SNR selects node number 3 as the first node.

Table 2 shows the rank of each node in the example graph.
Now, we check the neighbors of this node and their rank to
choose the next node. Among the neighbors of node number 3,
node number 4 has the highest rank value, and we add this node
as the next node to our list of selected nodes. We need to pick
another node according to our needs, and we check the neighbors
of node number 4 to choose the next node because this is the last
selected node in the cluster. Among the neighbors of this node,
SNR picks node number 5. Therefore, the final selected nodes are
3, 4, and 5.

H. Mostafaei, S. Afridi and J. Abawajy Future Generation Computer Systems 136 (2022) 270–281

a
a
c
c
o
a
S
n
t
l
a
a
p
n
n

4

n
a
T
c
t
o
g
t
m
o
e
b

c
s
t
n
i
r
T
u

4

r
n
t
p
T

Table 3
The trade-off among the metrics in example graph of SNR.
Prioritized metric Nodes BW Latency Cost

Bandwidth {3,2,6} 10,10,10 10.43,8.9,19.33 0.42,.47,0.89
Latency {5,4,3} 8,10,9 9.38,10.33,8.38 0.38,0.45,0.17
Cost {1,3,4} 8,9,8 15.91,8.38,24.29 0.25,0.17,0.42

Table 4
Custom graph properties.
Graph Nodes Links BW [Mbps] Delay [ms] Cost [$ per GB]

Small 20 35 [7, 14] [1, 25] [0.02, 0.25]
Medium 30 65 [7, 14] [26, 75] [0.02, 0.25]
Large 50 140 [7, 14] [76, 125] [0.02, 0.25]

Tradeoff among the parameters. We now show the tradeoff
mong different parameters. Table 3 shows the impact of giving
higher priority to the bandwidth, delay, and cost. The nodes
olumn in this table shows the selected nodes by SNR for the
orresponding prioritized metric. When we give the highest pri-
rity to the bandwidth, SNR picks the nodes with the highest
vailable bandwidth. For example, by prioritizing the bandwidth,
NR selects nodes 3, 2, and 6. There are 3 links among these
odes, and thus, we have three values for each row in Table 3
hat shows the chosen parameter value for that link. While for the
atency and cost, SNR selects the nodes with the lowest latency
nd cost. The corresponding values for each prioritized parameter
re highlighted in red in Table 3. The results show that the
riority of each network parameter dictates the selection of the
odes. The obtained results confirm that SNR selects the worker
odes based on the applications’ demand.

. Evaluations

In this section, we first study the tradeoff among different
etwork-related parameters of the worker node placement by
ssigning priorities to bandwidth, latency, and cost of WAN links.
hen, we measure the performance of the SNR algorithm on three
ustom and all topologies of TopologyZoo [15]. The main reason
o choose three custom topologies to run our experiments relies
n the fact that the networks of TopologyZoo lack information re-
arding the link latency, bandwidth, and cost. The goal is to assess
he impact of placement on various network-related performance
etrics such as average delay among the nodes and the number
f hops. Finally, we measure the impact of placement on the
xecution latency of streaming queries using Yahoo! streaming
enchmark [22].
We use the real networks’ delay such as the ones in [19,23],

ost [24–26], and bandwidth [27] among the worker nodes and
et the locations of worker nodes using the real-world datacen-
er locations [28–30]. We create three custom random graphs,
amely small, medium, and large, to simulate diverse networks
n terms of size and other parameters. Table 4 presents the cor-
esponding network parameters with their values in each graph.
he link delay information for TopologyZoo networks is obtained
sing the coordination information.

.1. Illustrating tradeoff

We check the tradeoff among different network-relevant pa-
ameters by assigning different priorities among them for sce-
arios with 8 worker nodes. In this experiment, we first give
he highest priority to the available bandwidth while keeping the
riority among the delay and cost fixed and the same in Eq. (5).

hen, we do the same measurements for the delay and cost in

276
Table 5
The trade-off among the metrics in small topology.

Prioritized metric min(BW) Latency
∑

Cost

Bandwidth 9.4 34.29 17.12
Latency 7.3 20.55 22.58
Cost 7.3 26.29 15.47

Table 6
The trade-off among the metrics in medium topology.

Prioritized metric min(BW) Latency
∑

Cost

Bandwidth 10.1 107.35 16.44
Latency 7.5 92.18 24.03
Cost 8.3 96.16 11.28

Table 7
The trade-off among the metrics in large topology.

Prioritized metric min(BW) Latency
∑

Cost

Bandwidth 8.7 223.89 16.98
Latency 7.0 132.95 11.53
Cost 7.2 155.95 10.4

all three custom topologies. The values for the bandwidth are in
[Mbps], latency in [ms], and cost [$ per GB].

Tables 5, 6, and 7 reports the tradeoff among bandwidth, delay,
and cost of running SNR on small, medium, and large topologies
for the links among the chosen nodes. In these tables, we report
the minimum available bandwidth (min(BW)) among the chosen
nodes because it will impact the data transfer rate. We put the
average delays (latency) among the nodes, while for the cost, we
sum the cost (

∑
cost) of each among the selected nodes. We high-

light the corresponding values from the output of SNR for each
prioritized parameter in red. The obtained results confirm that
SNR can select the worker nodes according to their priority. For
example, it selects worker nodes with minimum delays among
themwhen link delay has the highest priority in Tables 5, 6, and 7.

4.2. Topology-aware results

In this section, we report the results of our experiments on
different network topologies. We measure the effectiveness of the
SNR in placing the worker nodes on all network topologies of
TopologyZoo.

Custom topology. First, we use the same priority among the
parameters and measure the average link delay among the chosen
worker nodes by the SNR and default algorithms. In the default
approach, each DSP selects the worker nodes in an ordered fash-
ion starting from node number 1. We run the SNR and default
methods to choose 4 to 8 worker nodes by assuming that all the
worker nodes have the same number of available task slots to
execute the streaming tasks.

Fig. 6 shows that by increasing the number of worker nodes
in a cluster, the average delay among them also increases in all
three topologies. We summarize the main reason for such an
increment in the average link latency among the chosen worker
nodes. When the DSP cluster has more worker nodes, the number
of links connecting them increases because we need more links
to connect the worker nodes. We may need to cross several links
to reach from a worker node to another one. In such scenario,
the link latency between two nodes is the sum of latency of
the intermediate links latency. Consequently, we need to find
the average values of more links possibly with higher latency.
Therefore, the overall average links latency of the algorithms
increases. The obtained results show that the average delays in
SNR are 1.35x, 1.42x, and 1.61x less than the default method in

H. Mostafaei, S. Afridi and J. Abawajy Future Generation Computer Systems 136 (2022) 270–281
Fig. 6. The average delay among the worker nodes on custom topologies for different number of workers in a cluster network.
F
p
i

r
w
o
V
e
l
e
e
a
t
t
o
p
a
w
W
i
v
d
o

t
a
t
r

Fig. 7. SNR vs. default. (a) Average delay among the chosen nodes in Topol-
ogyZoo networks (b) Average hops among the chosen nodes in TopologyZoo
networks.

small, medium, and large topologies, respectively. However, SNR
starts the node selection procedure by using the links with lower
latency so that the overall average link latency is less than the
default approach.

TopologyZoo results. We check the impact of placement in SNR
on all network graphs of TopologyZoo. We use the coordination
information of the nodes to compute the link delay among the
nodes for the networks with such data. Fig. 7(a) shows that the
SNR selects the worker nodes on average 1.44x less link delay
than the default approach. Furthermore, Fig. 7(b) presents that
the traffic among the nodes should cross 1.41x times more hops
in the default approach than SNR. Using a fewer number of hops
decreases the routing overhead among the nodes, and it also
better utilizes the available capacity of the links.

4.3. Evaluation on real systems

In this section, we report the testbed used to run the Yahoo!
streaming benchmark. The Yahoo! streaming benchmark [14] is
a popular streaming benchmark that has been used in other
research studies related to the performance evaluation of big data
analytics platforms [31]. The Yahoo! streaming benchmark mea-
sures the performance of DSPs, e.g., Apache Storm, Apache Spark,
and Apache Flink. The benchmark emulates an advertisement
analytics pipeline in the DSPs and measures the performance of
the various systems. There is a number of advertising campaigns
in the query in which each one gets a set of advertisements. The
producer of the benchmark generates events with a timestamp.
Then, it truncates them to a specific digit that determines the
campaign it belongs to. Each event also carries the last update
timestamp along with the event information. The benchmark
uses Apache Kafka [32] for event generation. After processing
the event by each DSP, the benchmark calculates the event la-
tency by deducting the window timestamp and duration from
the last updated timestamp. The benchmark uses Redis [33] as
the sink of query and it was the bottleneck for the benchmark.
The bottleneck has been removed from the benchmark in [22].
277
Fig. 8. The topology of testbed used for our emulation.

inally, the obtained latency value along with the number of
rocessed events are written into appropriate files. More detailed
nformation on the benchmark could be found in [14].

The testbed has 11 VMs with 16 CPU cores and 8 GB of RAM
unning Debian 10. Each DSP has a server–client architecture,
here the master node executes the tasks on the set of slaves
r worker nodes. We assign a VM for the master node, and 8
Ms for the worker nodes in each system. Therefore, the cluster
xecutes the query with 8 worker nodes emulating 8 different
ocations in the network. Each worker node has 6 task slots to
xecute the streaming query and we use 6700 MB of memory in
ach worker to use for task execution. We dedicate a VM for Kafka
nd a VM for the Redis database. We use Kafka VMs to generate
he required input rate. Each Kafka producer can generate up
o 25k events/second without adding delay to the events. One
f the main goals for geo-distributed stream processing is to
rocess the events close to the source of data. To emulate such
n environment, we connect Kafka VM via dedicated links to the
orker nodes resulting in zero milliseconds of delay among them.
e add more Kafka VMs to the cluster to generate the desired

nput data. Furthermore, we connect the Redis VM to all workers
ia a dedicated collision domain to have zero milliseconds of
elay among the workers and sink. Fig. 8 shows the topology of
ur testbed.
We measure the impact of the worker node placement on

hree custom topologies on Spark, Storm, and Flink. To do so, we
pply SNR on the network graphs, i.e., small, medium, and large,
o select the place of the worker nodes and obtain the network-
elated parameter values. Then, we use the tc tool to set artificial

H. Mostafaei, S. Afridi and J. Abawajy Future Generation Computer Systems 136 (2022) 270–281

d
n
o

s
D
e
a
l
t
m
l
s
t
h

Fig. 9. The execution latency of Spark, Storm, and Flink on small topology by varying the input data rate.
elays among the worker nodes given from running SNR. Each
ode is connected to other nodes via a link avoiding the routing
verhead.
We also apply the recommended settings of the Yahoo!

treaming benchmark to set the configuration parameters in each
SP. We set the Spark batch interval to 10k ms, and also the
vent acknowledgment of Storm to 0. We connect the Kafka
nd Redis VMs directly to the worker nodes. This setting al-
ows us to simulate the scenarios in which the query execu-
ion of the system is performed close to the source. Further-
ore, we use the parallelism parameter of Flink, i.e., paral-
elism.default, to 48 and the settings for Spark by assigning
park.default.parallelism to 48. We also use 6 task execu-
ors per worker in Storm. Finally, we assume that latency has the
ighest priority in selecting worker nodes and assign w2 = 0.9

in Eq. (5).
The $ cost of executing a task on a worker plays a role when

the DCs are geographically distributed around the globe and
more than a continent. We have checked the $ cost of steering
traffic of different regions of the public cloud providers such as
Google [25] and Amazon [26] and found that it remains fixed and
constant on the same region/continent. However, this factor plays
a determinant role when the DCs are on different continents.
Therefore, we exclude this parameter in placing the workers.

We compare the performance of SNR with those of the default
approach and the centralized ones. The latter one indicates the
performance of DSPs when running the experiments in a rack
on a DC. The main goal to include the results of the centralized
approach can be summarized as follows. First, we study the effect
of running experiments on WANs compared with those of a
single DC. Second, we show the impact of different algorithms in
selecting different places for the worker nodes in the streaming
scenarios.

4.3.1. Small topology
In the small topology, the nodes are close to each other, which

results in having low link delay among them. The worker node
placement on the small topology can give us insight regarding the
performance of DSPs when running them across a small continent
around the globe such as Europe since the inter-node latency is
mostly less than 30 ms. Therefore, the obtained results from this
set of experiments on the small topology can help us to better
design the network for geo-distributed systems in Europe size.
We vary the input rate in the range of 10k to 50k events per
second.

Figs. 9(a), 9(b), 9(c) show the 99-percentile execution latency
for each DSP. The general trend in these three figures can be
summarized as follows. By increasing the input rate of each sys-
tem, the execution latency of the events also increases. However,
the performance of Storm and Flink are similar, while Spark has

the highest execution latency. Furthermore, the SNR improves

278
the execution latency of Spark up to 1.5x–2.9x, Storm up to
1.1x–2.5x, and Flink up to 1.1x–1.45x compared with the default
approach, respectively. The reason for such improvements is due
to a low inter-node latency among the worker nodes in the DSPs.
We also checked 95th- and 90th percentile latency of the task
execution for Spark, Storm, and Flink, and found similar behavior.
The obtained results confirm that Spark, Storm, and Flink can
process the events irrespective of WAN delays when they are in
the range of a few 10 s of milliseconds.

We also report slight performance degradation of all DSPs
in small topology compared with a centralized approach. We
summarize our observation as follows. All DSPs can tolerate some
milliseconds of links delay. However, this observation is limited
due to the availability of Kafka VMs in our testbed, but our goal
is to show that even a small amount of links delay can degrade
the performance of stream processing systems.

4.3.2. Medium topology
We do the same experiments on medium topology that has

higher inter-node delays compared with those of small topol-
ogy. The obtained results from the medium topology can give
us insights into the performance of DSPs when running them
on a US-size network since the inter-node latency is less than
75 ms. However, crossing several links can result in higher latency
between the source and the destination of the connection.

Fig. 10 shows the execution latency in the medium topology
is longer than the small topology since the internode delays are
longer. However, SNR improves the execution latency of Spark
up to 2.2x–7.2x, Storm up to 1.2x–3.4x, and Flink 1.4x–3.3x
compared with the default approach. One of the main reasons
for such results lies in Transmission Control Protocol (TCP) that
suffers from high RTT among the worker nodes. The second
reason for the difference among DSPs comes from the different
architectures of each one. Spark streaming is not a pure stream
processing system and processes the incoming stream of events
in a micro-batch fashion. Therefore, the batch interval of Spark
plays a determinant role here. Furthermore, Storm topology uses
a different number of task executors using Spout and Bolts op-
erators. Therefore, running a Storm topology in a geo-distributed
environment needs further attention. Even though if all DSPs use
the Netty framework [34] for internode communications, but the
way they exchange data is different.

We report the performance of the default approach on Spark
and Storm degrades more than an order of magnitude on medium
topology compared with a centralized one while having less effect
on Flink.

4.3.3. Large topology
We also obtain close results like the medium topology for

Spark, Storm in the large custom topology. The obtained results
from the Large topology can give us insights into the performance

H. Mostafaei, S. Afridi and J. Abawajy Future Generation Computer Systems 136 (2022) 270–281

o
t
e
t
l
W

o
t
l
r
t
l
t
s
f
u
c

S
t
s
s
h

4

i
i
o
D
e
u
t
F

o

Fig. 10. The 99-percentile execution latency of Spark, Storm, and Flink on medium topology by varying the input data rate.
Fig. 11. The 99-percentile execution latency of Spark, Storm, and Flink on large topology by varying the input data rate.
f DSPs when running them on a network that is scattered around
he globe since the inter-node latency is less than 125 ms. How-
ver, crossing several links can result in higher latency between
he source and the destination of the connection. For example, the
ink between Tokyo and New York on a network topology such as
onderNet [19] can result in more than 200 ms of delay.
Fig. 11 shows the execution latency of Spark, Storm, and Flink

n the large topology. The general trend in the results of large
opology is that all the considered DSPs have higher execution
atency compared with the small and medium topology. The main
eason for such behavior relies on the inter-node latency among
he worker nodes in the large topology. Since the links have
onger latency the execution latency is also higher regardless of
he worker node selection algorithm. While Storm and Spark have
imilar execution latency, Flink can process the incoming events
aster. Additionally, SNR improves the execution latency of Spark
p to 1.15x–1.62x, Storm up to 1.1x–1.44x, and Flink 1.47x–2.1x
ompared with the default approach.
We report the performance of the default approach on Spark,

torm, and Flink degrades more than order of magnitude on large
opology compared with a centralized one. The main reason for
uch results relies on the nature of links in large topology since
ome links have a latency of more than 150 ms. The links with
igher latency dictate the query execution time.

.3.4. Throughput
We now evaluate the throughput of the DSPs by varying the

nput load on the small topology using the SNR algorithm. The
nput data rate varies in the range of 10k to 50k events per sec-
nd. The goal of this experiment is to understand how different
SPs react to the input rate. We take the total sum of processed
vents and report them for the throughput analysis with million
nit (M). Table 8 shows that Spark, Storm, and Flink have similar
hroughput for the different scenarios with various input rates.
urthermore, this trend exists for both SNR and Default methods.
We now report the throughput of DSPs for the medium topol-

gy in Table 9. Spark can process a slightly less number of events
279
Table 8
The throughput of Spark, Storm, and Flink on small topology for SNR and
Default.
Load Spark Storm Flink

SNR Default SNR Default SNR Default

10k 1.94M 1.94M 1.98M 1.98M 1.98M 1.98M
20k 3.88M 3.88M 3.97M 3.97M 3.97M 3.97M
30k 5.82M 5.82M 5.95M 5.95M 5.86M 5.85M
40k 7.88M 7.88M 7.81M 7.81M 7.81M 7.84M
50k 9.7M5 9.75M 9.93M 9.93M 9.86M 9.93M

Table 9
The throughput of Spark, Storm, and Flink on medium topology for SNR and
Default.
Load Spark Storm Flink

SNR Default SNR Default SNR Default

10k 1.78M 1.78M 1.98M 1.98M 1.98M 1.98M
20k 3.88M 3.88M 3.97M 3.97M 3.97M 3.97M
30k 5.82M 5.82M 5.95M 4.35M 5.96M 5.95M
40k 7.88M 7.88M 7.94M 6.95M 7.94M 7.91M
50k 9.75M 9.75M 9.1M 5.44M 9.93M 9.93M

compared with the small topology for both SNR and Default ap-
proaches. Storm performs completely differently when applying
SNR and Default mechanisms compared with the small topology.
In the case of using SNR, Storm has similar throughput compared
with the small topology except for scenarios with 50k load. In
contrast, for the case of Storm Default, the throughput increases
by increasing the input rate up to 40k load but it decreases when
the load is 50k. Flink still has the same throughput as the small
topology.

Table 10 shows the total throughput of Spark, Storm, and Flink
for different scenarios with various input rates on the large topol-
ogy. The throughput of Spark and Storm is significantly decreased
compared with the medium topology since the worker nodes
have longer inter-node delays. In contrast, Flink process a similar

H. Mostafaei, S. Afridi and J. Abawajy Future Generation Computer Systems 136 (2022) 270–281

m

W
t
w
a
W
t
t
t
p
T
l
q
a
w
m
s

W
h
n
e
r
s
m
c
t
l
t
E
d
h
b
w
t
e
n
s

T
r
[
f
w
O
N

Table 10
The throughput of Spark, Storm, and Flink on large topology for SNR and
Default.
Load Spark Storm Flink

SNR Default SNR Default SNR Default

10k 1.48M 1.14M 1.98M 1.98M 1.98M 1.98M
20k 1.78M 1.31M 3.97M 3.89M 3.97M 3.96M
30k 4.78M 4.22M 5.71M 2.82M 5.95M 5.95M
40k 5.42M 4.46M 5.44M 2.91M 7.97M 7.93M
50k 5.46M 4.76M 4.71M 3.02M 9.93M 9.92M

number of events. SNR improves 1.14x–1.36x the throughput of
Spark, while this improvement is up to 2.0x for Storm. Flink can
process a similar number of events in both algorithms. Note that
we already reported the differences of DSPs and algorithms in
terms of execution latency.

5. Related work

This section briefly reports the current state-of-the-art place-
ent in the geo-distributed analytics systems.

ide-area Data Analytics. Several works have been proposed
o execute queries in wide-area scenarios [2,6,7,12,35,36]. These
orks consider different aspects of job execution in a wide-
rea such as minimizing the bandwidth usage or handling the
AN delays. For example, Kimchi [12] studies the impact of

he network cost on the task placement by giving the priority
o the link cost rather than bandwidth and delay. Additionally,
he paper considers the dynamic of link cost in the selection
rocedure by applying the proposed approach on Apache Spark.
he work in [36] consider the communication costs of the WAN
ink in the geo-distributed scenarios to reduce the latency of
uery execution. RTSATD [37] minimizes the completion time
nd monetary cost of processing big data workflows in clouds
ithout delaying the completion of workflows. These solutions
ostly tackle the problems in scenarios in which the input data
ize known prior to the query execution.

ide-area Stream Analytics. There are numerous works that
ave been considered the applications for the streaming sce-
arios [8–10,38,39]. In this case, there is no ending for the job
xecution and the input data rate can change due to several
easons like the number of users generating the data for the
ystem. A WAN-aware scheduling algorithms for Apache Flink in
ulti-query scenarios have been proposed in [39,40]. The system
hecks the common parts of the input queries and schedules
hem to run once. The work in [38] considers WAN bandwidth
imitations of a geo-distributed streaming cluster to schedule
he streaming task in Apache Spark streaming using Amazon
C2. CONA [41] addresses the congestion problem in the inter-
atacenter transfer methods that use the bandwidth allocation for
igh utilization. There are some attempts that find the tradeoff
etween two network-relevant parameters and performance in
ide-area analytics. For example, the works [6,12,35] consider
he tradeoff between the query execution and WAN usage. How-
ver, the contributions of these works consider some of the
etwork-relevant parameters for the task execution in wide-area
cenarios.

hird-party resource managers. There are several third-party
esource management daemons such as Apache Yarn [42], Mesos
43], or Omega [44] that are integrated with the big data analytics
rameworks. Yarn and Mesos do not consider the network band-
idth in managing the system resources. While Oktopus [45] and
rchestra [46] consider the availability of the network resources.

evertheless, both system do not focus on big data analytics.

280
6. Conclusion

We propose a worker node placement framework using a
simple-additive weighting approach for geo-distributed datacen-
ters running stream processing tasks. The framework does the
placement according to the preferred network-relevant param-
eters, i.e., bandwidth, latency, and data transmission cost. It also
finds the tradeoff among the parameters when placing the worker
nodes. We applied the worker node selection algorithm of our
framework on all the networks of TopologyZoo and a set of
custom topologies to show the effectiveness of our algorithm.
Furthermore, we performed a set of experiments to emulate
the real-world streaming use-cases using the Yahoo! streaming
benchmark. The results show that our worker node selection
algorithm significantly improves the performance of the current
DSPs. Additionally, the framework can be easily integrated with
the current DSPs. The contribution of this work is limited to
the network-relevant parameters for the placement. We plan to
extend our framework to use the concept of Software-Defined
Networking (SDN) for network monitoring and placement. We
also intend to include the available physical resource information
of the different worker nodes in the network for the placement
purpose. We also plan to include the heterogeneity of task slots
in placing the worker nodes in the geo-distributed streaming
scenarios.

CRediT authorship contribution statement

Habib Mostafaei: Conceptualization, Investigation, Project
administration, Software, Supervision, Validation, Visualization,
Writing—original draft, Writing–review and editing. Shafi
Afridi: Software, Validation, Writing–review and editing. Jemal
Abawajy: Writing—original draft, Writing–review and editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work was partially funded by the German Ministry for Ed-
ucation and Research as BIFOLD — Berlin Institute for the Founda-
tions of Learning and Data (ref. 01IS18025A and ref. 01IS18037A).

References

[1] H. Mostafaei, S. Afridi, J.H. Abawajy, SNR: NEtwork-aware geo-distributed
stream analytics, in: 2021 IEEE/ACM 21st International Symposium on
Cluster, Cloud and Internet Computing (CCGrid), 2021, pp. 820–827, http:
//dx.doi.org/10.1109/CCGrid51090.2021.00100.

[2] R. Viswanathan, G. Ananthanarayanan, A. Akella, CLARINET: WAN-aware
optimization for analytics queries, in: 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), 2016, pp.
435–450.

[3] Apache spark, 2020, https://spark.apache.org/.
[4] Apache storm, 2020, https://storm.apache.org/.
[5] Apache flink, 2020, https://flink.apache.org/.
[6] Q. Pu, G. Ananthanarayanan, P. Bodík, S. Kandula, A. Akella, P. Bahl, I.

Stoica, Low latency geo-distributed data analytics, in: Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication,
SIGCOMM 2015, London, United Kingdom, August 17-21, 2015, 2015, pp.
421–434.

[7] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, G. Varghese, WANalytics:
ANalytics for a geo-distributed data-intensive world, in: CIDR 2015, 2015.

[8] D. Kumar, J. Li, A. Chandra, R. Sitaraman, A TTL-based approach for data
aggregation in geo-distributed streaming analytics, Proc. ACM Meas. Anal.
Comput. Syst. 3 (2) (2019).

http://dx.doi.org/10.1109/CCGrid51090.2021.00100
http://dx.doi.org/10.1109/CCGrid51090.2021.00100
http://dx.doi.org/10.1109/CCGrid51090.2021.00100
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb2
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb2
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb2
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb2
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb2
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb2
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb2
https://spark.apache.org/
https://storm.apache.org/
https://flink.apache.org/
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb7
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb7
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb7
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb8
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb8
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb8
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb8
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb8

H. Mostafaei, S. Afridi and J. Abawajy Future Generation Computer Systems 136 (2022) 270–281
[9] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, E.A. Lee, AWStream: ADaptive
wide-area streaming analytics, in: Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communication, in: SIGCOMM ’18,
2018, pp. 236–252.

[10] F. Lai, J. You, X. Zhu, H.V. Madhyastha, M. Chowdhury, Sol: Fast dis-
tributed computation over slow networks, in: 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20), 2020, pp.
273–288.

[11] B. Heintz, A. Chandra, R.K. Sitaraman, Optimizing timeliness and cost in
geo-distributed streaming analytics, IEEE Trans. Cloud Comput. (2017) 1.

[12] K. Oh, A. Chandra, J. Weissman, A network cost-aware geo-distributed data
analytics system, in: 2020 20th IEEE/ACM International Symposium on
Cluster, Cloud and Internet Computing (CCGRID), 2020, pp. 649–658.

[13] T. Evangelos, Multi-Criteria Decision Making Methods: A Comparative
Study, Vol. 4, Kluwer Academic Publication, Netherland, 2000.

[14] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z.
Liu, K. Nusbaum, K. Patil, B.J. Peng, P. Poulosky, Benchmarking streaming
computation engines: Storm, flink and spark streaming, in: 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2016, pp. 1789–1792.

[15] The internet topology zoo, 2020, http://www.topology-zoo.org/dataset.
html.

[16] Apache flink use-cases, 2021, https://flink.apache.org/usecases.html.
[17] Data protection in the EU, the general data protection regulation (GDPR);

regulation (EU) 2016/679, 2016, http://bit.ly/3qdVUVo.
[18] N. Feamster, J. Rexford, E. Zegura, The road to SDN: An intellectual history

of programmable networks, SIGCOMM Comput. Commun. Rev. 44 (2)
(2014) 87–98, http://dx.doi.org/10.1145/2602204.2602219.

[19] G. p. s. p. times between wondernetwork servers, 2020, https://
wondernetwork.com/pings.

[20] J. Young, T. Barth, Web performance analytics show even 100-millisecond
delays can impact customer engagement and online revenue, Akamai
Online Retail Performance Report, 2017.

[21] E. Triantaphyllou, Multi-criteria decision making methods, in: Multi-
Criteria Decision Making Methods: A Comparative Study, Springer, 2000,
pp. 5–21.

[22] Extending the yahoo streaming benchmarks, 2020, https://github.com/
dataArtisans/yahoo-streaming-benchmark.

[23] ATT Network delay, 2020, [link]. URL http://soc.att.com/30cKc2m.
[24] Microsoft azure: bandwidth pricing details, 2020, http://bit.ly/3e5PkxF.
[25] Google cloud: pricing, 2020, https://cloud.google.com/pubsub/pricing.
[26] Amazon EC2 on-demand pricing, 2020, http://amzn.to/3beAFOJ.
[27] Akamai’s [state of the internet]: Q1 2017 report, 2017, https://www.bit.ly/

3jPSKEP.
[28] Microsoft azure, 2020, https://bit.ly/3qdWimV.
[29] Google datacenters, 2020, https://about.google/locations/.
[30] Amazon, 2020, https://amzn.to/38zsFq4.
[31] S. Zeuch, B.D. M., J. Karimov, C. Lutz, M. Renz, J. Traub, S. Breß, T. Rabl, V.

Markl, Analyzing efficient stream processing on modern hardware, VLDB
12 (5) (2019).

[32] Apache kafka, 2020, https://kafka.apache.org/.
[33] Redis, 2020, https://redis.io/.
[34] Netty framework, 2020, https://netty.io/.
[35] C.-C. Hung, G. Ananthanarayanan, L. Golubchik, M. Yu, M. Zhang, Wide-

area analytics with multiple resources, in: Proceedings of the Thirteenth
EuroSys Conference, in: EuroSys ’18, 2018.

[36] W. Xiao, W. Bao, X. Zhu, L. Liu, Cost-aware big data processing across geo-
distributed datacenters, IEEE Trans. Parallel Distrib. Syst. (ISSN: 2161-9883)
28 (11) (2017) 3114–3127.

[37] H. Chen, J. Wen, W. Pedrycz, G. Wu, Big data processing workflows
oriented real-time scheduling algorithm using task-duplication in geo-
distributed clouds, IEEE Trans. Big Data 6 (1) (2020) 131–144, http://dx.
doi.org/10.1109/TBDATA.2018.2874469.

[38] W. Li, D. Niu, Y. Liu, S. Liu, B. Li, Wide-area spark streaming: Automated
routing and batch sizing, IEEE Trans. Parallel Distrib. Syst. 30 (6) (2019)
1434–1448.
281
[39] A. Jonathan, A. Chandra, J. Weissman, Multi-query optimization in wide-
area streaming analytics, in: Proceedings of the ACM Symposium on Cloud
Computing, in: SoCC ’18, 2018, pp. 412–425.

[40] A. Jonathan, A. Chandra, J. Weissman, WASP: WIde-area adaptive stream
processing, in: Proceedings of the 21st International Middleware Confer-
ence, in: Middleware ’20, 2020, pp. 221–235, http://dx.doi.org/10.1145/
3423211.3425668.

[41] X. Tao, K. Ota, M. Dong, W. Borjigin, H. Qi, K. Li, Congestion-aware traffic
allocation for geo-distributed data centers, IEEE Trans. Cloud Comput.
(2020) 1.

[42] Apache hadoop YARN, 2020, http://bit.ly/3kTErjX.
[43] Apache mesos, 2020, https://mesos.apache.org/.
[44] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, J. Wilkes, Omega: Flex-

ible, scalable schedulers for large compute clusters, in: Proceedings of
the 8th ACM European Conference on Computer Systems, in: EuroSys ’13,
2013, pp. 351–364, http://dx.doi.org/10.1145/2465351.2465386.

[45] H. Ballani, P. Costa, T. Karagiannis, A. Rowstron, Towards predictable
datacenter networks, SIGCOMM Comput. Commun. Rev. 41 (4) (2011)
242–253, http://dx.doi.org/10.1145/2043164.2018465.

[46] M. Chowdhury, M. Zaharia, J. Ma, M.I. Jordan, I. Stoica, Managing data
transfers in computer clusters with orchestra, in: Proceedings of the ACM
SIGCOMM 2011 Conference, in: SIGCOMM ’11, 2011, pp. 98–109, http:
//dx.doi.org/10.1145/2018436.2018448.

Habib Mostafaei received the Ph.D. in Computer
Science and Engineering from Roma Tre University
in 2019. He is currently an Assistant Professor of
Computer Science at the Eindhoven University of Tech-
nology. Before, he was a postdoctoral researcher at
Technische Universität Berlin where he was involved
in the BIFOLD-BBDC project from 2019 to 2022. He is
a member of ACM and IEEE. His main research interests
include networked systems, network measurements,
and distributed systems. For additional information:
https://mostafaei.bitbucket.io/.

Shafi Afridi received a dual degree EIT Digital masters
program at KTH Royal Institute of Technology, Swe-
den, and Technische Universität, Berlin in 2022. He
is affiliated as a research assistant with the research
group Internet Network Architectures (INET) of TU-
Berlin. He received a B.E degree in Electrical (Telecom)
Engineering from the National University of Sciences
and Technology, Islamabad, Pakistan, in 2016. His re-
search topics include big data, internet measurements,
and programmable networks.

Jemal Abawajy is currently a Full Professor with
the Faculty of Science, Engineering and Built En-
vironment, Deakin University, Australia. He has au-
thored/coauthored over 250 refereed articles and su-
pervised numerous Ph.D. students to completion. He
has delivered over 50 keynote and seminars worldwide
and has been involved in the organization of over
international conferences in various capacity, including
chair and general co-chair. He has also served on
the editorial board of numerous international journals,
including the IEEE Transactions on Cloud Computing.

http://refhub.elsevier.com/S0167-739X(22)00220-5/sb9
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb9
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb9
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb9
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb9
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb9
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb9
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb10
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb10
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb10
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb10
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb10
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb10
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb10
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb11
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb11
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb11
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb12
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb12
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb12
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb12
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb12
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb13
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb13
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb13
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb14
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb14
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb14
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb14
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb14
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb14
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb14
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb14
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb14
http://www.topology-zoo.org/dataset.html
http://www.topology-zoo.org/dataset.html
http://www.topology-zoo.org/dataset.html
https://flink.apache.org/usecases.html
http://bit.ly/3qdVUVo
http://dx.doi.org/10.1145/2602204.2602219
https://wondernetwork.com/pings
https://wondernetwork.com/pings
https://wondernetwork.com/pings
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb20
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb20
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb20
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb20
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb20
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb21
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb21
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb21
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb21
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb21
https://github.com/dataArtisans/yahoo-streaming-benchmark
https://github.com/dataArtisans/yahoo-streaming-benchmark
https://github.com/dataArtisans/yahoo-streaming-benchmark
http://soc.att.com/30cKc2m
http://bit.ly/3e5PkxF
https://cloud.google.com/pubsub/pricing
http://amzn.to/3beAFOJ
https://www.bit.ly/3jPSKEP
https://www.bit.ly/3jPSKEP
https://www.bit.ly/3jPSKEP
https://bit.ly/3qdWimV
https://about.google/locations/
https://amzn.to/38zsFq4
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb31
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb31
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb31
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb31
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb31
https://kafka.apache.org/
https://redis.io/
https://netty.io/
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb35
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb35
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb35
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb35
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb35
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb36
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb36
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb36
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb36
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb36
http://dx.doi.org/10.1109/TBDATA.2018.2874469
http://dx.doi.org/10.1109/TBDATA.2018.2874469
http://dx.doi.org/10.1109/TBDATA.2018.2874469
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb38
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb38
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb38
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb38
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb38
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb39
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb39
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb39
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb39
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb39
http://dx.doi.org/10.1145/3423211.3425668
http://dx.doi.org/10.1145/3423211.3425668
http://dx.doi.org/10.1145/3423211.3425668
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb41
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb41
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb41
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb41
http://refhub.elsevier.com/S0167-739X(22)00220-5/sb41
http://bit.ly/3kTErjX
https://mesos.apache.org/
http://dx.doi.org/10.1145/2465351.2465386
http://dx.doi.org/10.1145/2043164.2018465
http://dx.doi.org/10.1145/2018436.2018448
http://dx.doi.org/10.1145/2018436.2018448
http://dx.doi.org/10.1145/2018436.2018448
https://mostafaei.bitbucket.io/

	Network-aware worker placement for wide-area streaming analytics
	Introduction
	System model and problem statement
	System model
	Problem statement

	SNR algorithm
	SNR algorithm
	SNR orchestrator
	Running example for SNR

	Evaluations
	Illustrating tradeoff
	Topology-aware results
	Evaluation on real systems
	Small topology
	Medium topology
	Large topology
	Throughput

	Related work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

