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Abstract—Emerging network applications ranging from video
streaming to virtual/augmented reality should provide stringent
quality-of-service (QoS) guarantees in complex and dynamic
environments with shared resources. A promising approach to
meeting these requirements is to automate complex network
operations and create self-adjusting networks. These networks
should automatically gather contextual information, analyze how
to efficiently ensure QoS requirements, and adapt accordingly.
This paper presents REACTNET, a self-adjusting networked
system designed to achieve this vision by leveraging emerging
network programmability and machine learning techniques. Pro-
grammability empowers REACTNET by providing fine-grained
telemetry information, while machine learning-based classifi-
cation techniques enable the system to learn and adjust the
network to changing conditions. Our preliminary implementation
of REACTNET in P4 and Python demonstrates its effectiveness
in video streaming applications.

Index Terms—Self-adjusting networks, programmable data-
plane, video streaming, machine learning

I. INTRODUCTION

Communication networks have become a critical infrastruc-
ture of our digital society, imposing increasingly stringent re-
quirements on their dependability and performance. These re-
quirements, however, stand in stark contrast to today’s manual
and error-prone approach to managing and operating networks,
as well as the increasing complexity and scale of networks.
Indeed, many communication networks today need to serve
a wide spectrum of applications with different performance
requirements. These applications typically share network re-
sources in complex ways and have demand patterns that may
be hard to predict. For example, emerging applications such as
online gaming, video streaming, or virtual/augmented reality
may be latency-critical, while a distributed AI application may
be bandwidth-hungry. In addition to the inherent complexity of
meeting diverse requirements of the network applications, the
efficient operation of such networks is further challenged by
the limited visibility operators typically have into the current
network traffic, as highlighted in prior research [1], [2]. The
network operators need to develop several scripts to tailor the
network to specific workloads, which are prone to bugs [3].

Automating the management and operation of communi-
cation networks is key to overcoming the complexities and
dependability challenges of manual network operations [4]. A
particularly appealing vision is a fully self-adjusting network:
a network that automatically measures itself, gathers informa-
tion about its context and environment, current demands, and

loads, to then evaluate the most efficient and effective resource
allocation to meet quality of service (QoS) requirements.
Specifically, we are interested in self-adjusting networks that
continuously measure, analyze, and adapt.

According to [5], the algorithms in self-adjusting networks
must continuously be updated as the requirements and de-
mands change frequently, and usually, they vary from one
system to the other. The study also notes another challenge:
the cost and risk calculation for each system if it encounters
an unknown problem as humans do not manage it. So every
aspect of the possible error should be considered, depending
on which method we are using the self-driving

Programmable networks can play a vital role in the real-
ization of self-adjusting systems, as they provide flexibility to
collect fine-grained telemetry information about the network
traffic flows and adapt the forwarding rules accordingly at
line rate without delaying the packets of the flows [6]. To
achieve the adaptation goal self-adjusting networks, steering
traffic, and controlling connections among the endpoints are
not enough since we should also consider the storage and
processing capabilities of each compute element, particu-
larly those responsible for adaptation and adjustment [7],
[8]. Specifically, self-adjusting networks should dynamically
observe their current state and automatically react to optimize
for specific performance goals accordingly [1]. For example,
some Internet customers cannot bear a connection with jitter
and latency, which could negatively impact their systems or
services. Furthermore, operators can leverage machine learn-
ing (ML) algorithms to automate parts of network management
and simplify administration. By inspecting packets and flows
through data plane programmability [9], they can perform
further analysis and predict network behavior in various situ-
ations using ML methods. ML enables networked systems to
adapt to different conditions and respond automatically based
on trained data. Additionally, operators use ML algorithms
to classify network traffic, balancing resource consumption
in hardware devices with achieving reasonable classification
accuracy [6].

This paper presents REACTNET 1, a self-adjusting net-
worked system that aims to realize the vision of self-adjusting
networks. REACTNET is enabled by the increased flexibility
of communication networks today, particularly network pro-

1The preliminary version of this work has been published in [1].



grammability: e.g., programmable switches empower REACT-
NET through fine-grained telemetry information. REACTNET
relies on machine learning-based classification techniques,
allowing the system to learn and adjust the network to the new
conditions. Hence, REACTNET can learn from the ongoing
network conditions and adapt to the new state according to
the desired QoS and Quality of Experience (QoE) needs. Our
system measures the packet processing time of the desired
flows and can set a threshold for them when the packet enters
the network. This feature gives the system a powerful mecha-
nism to tune the network application needs to the desired QoS
or QoE requirements after applying the ML logic. In contrast,
conventional capacity over-provisioning techniques lack such
dynamicity in meeting the application needs.

We report on a prototype implementation of REACTNET
in a programmable data plane, i.e., P4 [9], and Python,
and also present a preliminary performance evaluation with
case studies. Our prototype evaluation on a video streaming
scenario shows that by adapting, REACTNET can indeed meet
the QoE requirements of the application. We also test the
accuracy of our ML classifiers on a trace of packets of IoT
devices [10] and observe an accuracy of 99% for the classified
packets.

The remainder of this paper is organized as follows. We
provide a preliminary discussion about the role of traffic
classification in Section II. Section III presents the design of
REACTNET. The proof-of-the-concept comes in Section IV.
Simulation results are illustrated in Section V. In Section VI,
we survey the related literature. Finally, Section VII concludes
the paper.

II. NETWORK TRAFFIC CLASSIFICATION

Network traffic classification has become a crucial part
of any networked system. Network operators seek solutions
to classify network traffic to address various issues [11].
The network administrators need to monitor flows within
their networks to take appropriate actions according to the
underlying network traffic, ensuring meeting the application
requirements [12]. Today, by analyzing flows and packets,
we can identify distinct patterns, find correlations between
features, and pinpoint failures within the network. Addition-
ally, network traffic analysis offers benefits such as intrusion
detection and achieving optimal QoS [13].

Initially, the concept of network traffic flows has been
crucial for intrusion detection. In [14], a collection of data was
used to analyze and classify ML methods. The algorithms used
in ML should address problems that evolve and change over
time, requiring continuous updates by technical experts [14].
The initial application of ML algorithms for traffic classifica-
tion and intrusion detection in networks was in 1994. Gener-
ally, ML methods utilize features from a dataset as inputs to
identify and illustrate patterns between features with different
characteristics. After learning and recognizing these patterns,
the output describes these patterns and structures [12].

Features are distinguishable elements of network traffic that
can be identified in unknown IP traffic. These features include

properties of IP packets or flows, such as protocol, flow
duration, IP addresses, and source or destination ports. We use
these features in ML algorithms for training on known datasets
to analyze and classify data, detecting feature correlations
among flows or packets. The algorithm then uses the trained
data to classify other unknown data.

Supervised and unsupervised learning-based methods are
the most applied ML techniques for traffic classification in the
networked systems [15]. In supervised learning, the algorithm
processes data based on a predefined set of labels and requires
preprocessing of the dataset [16]. Conversely, in unsupervised
learning, ML algorithms analyze the dataset and find patterns
without prior modification or preprocessing, generally group-
ing features into clusters [17]. However, to classify the packets
of different flows belonging to various applications, we use
supervised learning-based methods in this paper [18].

III. REACTNET ARCHITECTURE

REACTNET has three main components: 1) Collecting valu-
able data from ongoing traffic, 2) learning the network status
from collected data, and 3) adjusting the network based on the
learned situation. We now explain these components and how
REACTNET reaches the design goals.

A. Data Collection

Collecting data from the ongoing network traffic is a key
operation of self-adjusting networks. The legacy approach
to get insights from the network traffic is to use sampling.
This technique efficiently collects sample packets from the
ongoing traffic flow and provides partial information. Nev-
ertheless, the sampling technique adds non-negligible costs to
the network since it requires extra computing power to analyze
the data. However, leveraging the programmable hardware [9]
can greatly support efficient data collection. Programmable
switches can provide insights about packets of all flows
without degrading the performance of the network. Therefore,
we build REACTNET on programmable networks for data
collection.

We can collect insights from the packets by looking at the
packet header, such as source and destination IP addresses,
source and destination ports, and protocol number. However,
the insights collected from the packets of different flows can be
significantly improved using the In-band Network Telemetry
(INT) provided by P4 [19]. Examples of such telemetry
information are queue occupancy of network devices along
the path from source to destination, packet inter-arrival time,
and packet processing time.

The network operators of REACTNET can adjust data col-
lection depending on the time of need using a customized flag.
We use the mirroring feature of the programmable devices
to collect data from the traffic flows. If the flag is set,
the REACTNET mirrors the traffic to the designated egress
port towards the collector. Otherwise, the traffic flows follow
the forwarding rules for the routing decisions. The designed
system can also mirror the traffic according to the desired
interval using a timer if the information of the packets is
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Figure 1. The architecture of REACTNET for self-adjustable networks, implemented on a P4 programmable switch. The data for training, i.e., packet headers
and fine-grained telemetry information, of the system is collected via the data plane, while the classification of packets ( to three classes in this figure),
optimizing, and updating the network are performed via the control plane.

unnecessary. This feature can help the system save bandwidth
and decrease the overhead of handling all the packets. We use
P4 registers to store the flag value and the timer.

REACTNET can also collect datasets from the network for
different purposes since our data collection mechanism for
adjusting the network is generic. We use influxDB to store
the mirrored telemetry data in a database.

B. Learning from Data

The second pillar of a self-adjusting network is the capabil-
ity to learn from the ongoing network conditions. It empowers
the system to make decisions without human interaction based
on experience.

One common way to learn from data is to use ML learning
techniques. For example, we can use these techniques to
classify packets of different flows collected previously. Some
widely used classifiers in networking [20] are Decision Trees,
Support-Vector Machine (SVM), Random Forest (RF), and
K-Nearest Neighbor (KNN). These classifiers are supervised
learning techniques that use labeled datasets to train the system
and predict outcomes accurately. The classifiers of REACTNET
need the label information from the network operators to
classify the incoming packets accordingly. REACTNET labels
the data before mirroring them. Our system can learn from the
trained dataset and properly decide on upcoming conditions by
checking the precise information collected from the packets.

C. Adjusting the Network

The self-adjustable network adapts itself to a new state after
learning from the current state of the system. This adaption
can be accomplished in several ways, such as updating the
forwarding rules to balance the traffic of different links or
adjusting the priority of the flows to state a few. For instance,

consider a scenario where a network should adapt itself to
forward the packets of business transactions without delaying
them when competing for network resources. The system can
learn from the collected data and the packet processing time
of the packets if it needs to take a reaction to the ongoing
flows. The network operators can specify the requirements of
the applications to adjust the network.

The current implementation of REACTNET adjusts the net-
work flows by assigning the desired priority for the packets of
different flows. This happened by setting the proper queue ID
for the packets of each specific flow. However, this is a design
choice rather than a system limitation. REACTNET can also
forward the traffic toward multiple links to balance the load
of the network. This feature of our system needs to be tuned
according to the application’s needs. For example, we test the
system for a video-streaming scenario to check the impact of
self-adjusting on the video quality when the network has to
carry non-responsive UDP traffic in §V.

REACTNET adjusts the network– via the proper API of the
programmable switches– by updating the priority of the flows
to handle the upcoming traffic based on the detected traffic
pattern. The forthcoming traffic of the tuned flow follows the
new pattern to improve the QoS or QoE. The network operator
of REACTNET can also set the flag of mirroring the packets
via the switch API whenever the dataset needs updating with
the new telemetry information.

D. Bringing It All Together

We now explain the architecture of our system by putting
all the mentioned properties together. REACTNET comprises
two parts implemented in programmable networks’ data and
control planes. The data plane includes at least one P4
programmable switch, which can be the switch of the access



network, and provides all the means to our architecture. In
contrast, the system control plane gets the applications’ needs
as the input and adapts the forwarding rules accordingly. We
name the components of REACTNET as follows. P4 switch,
collector, ML classifier, and Adjuster.

Fig. 1 shows the architecture of REACTNET. The P4 switch
forwards the incoming packets to the designated egress ports
according to the forwarding rules. If the corresponding flag
to the mirror is set, the switch also appends the telemetry
information into the packets. Then, it mirrors the packet with
the desired header fields, including telemetry information to
the collector. The collector receives the mirrored packets and
puts them into the database by adding the proper label to
each packet. We need data labeling to train our system using
supervised machine-learning techniques. REACTNET gets the
label information from the control plane and stores it in a
proper data structure in the data plane. The ML classifier of
REACTNET reads the data from the database and classifies the
packets into different classes according to the network policy.
Then, it sends the classified packets to Adjuster component
that optimizes the rules and updates them accordingly. The P4
runtime agent updates the rules on the switch, and upcoming
traffic flows will follow the updated rule.

Our system measures the packet processing time of the
desired flows and can set a threshold for them when the packet
enters the network. This feature empowers the system with a
more sophisticated mechanism to tune the network application
needs to the desired QoS or QoE requirements. While the
conventional capacity over-provisioning techniques lack such
dynamicity in meeting the application needs.

IV. PROOF-OF-CONCEPT

We implement REACTNET in P4 using the Behavioral
Model v2 (BMv2) switch in Mininet and the ML part in
Python.
Flow identification. REACTNET needs to identify the packets
of different flows after classification by the ML techniques.
We assign an ID for each flow and use P4 registers to track
them. We also define a register called prio_reg to set the
priority of the packets for different flows. Since the amount
of available memory on the programmable device is limited,
the network operators of REACTNET can prioritize the IDs
based on the application need and service level agreements
after adjusting the network. The switch forwards the packets
based on their ID and corresponding priority value.
Data collection. We implement the data collection part of
our system from the network flows in P4 in the egress
control flow since we have access to all telemetry information.
Table I shows the telemetry information with their size in bits
REACTNET extracts from every packet. We explain some of
the features that need more clarification. Flow interval time
specifies how long each packet spends between the ingress
and egress ports. enq-qdepth shows the depth of the queue
when the packet was enqueued. deq-qdepth specifies the depth
of the queue when the packet was dequeued. deq-timedelta is
the time that the packet was in the queue. We append the

Table I
FEATURE USED TO BUILD OUR DATASET FOR THE ML-BASED

CLASSIFICATION.

Feature Size in bit

Ingress port 9
Flow interval time 48
enq-qdepth 19
deq-qdepth 19
deq-timedelta 32
Protocol number 8
Source port 16
Destination port 16
IPv4 source address 32
IPv4 destination address 32

telemetry information to the packet and forward it to our data
collector.
ML classification. We implement the ML classification com-
ponent of REACTNET using the scikit-learn library in Python.
The library has a reach set of implementations for different ML
techniques. Our system applies different supervised learning
techniques to classify the packets. The user can also specify
the desired classification algorithm to apply to the collected
data. We use the recommendation of [21] to provide the
required label information for packet classification.
Self-tuning dataset. REACTNET by default collects telemetry
information of each packet. However, the network operator can
tune our system to collect the amount of the cloned packets
using a predefined time interval. The time interval information
is an input for the system provided by the control plane. This
feature avoids the overloading of the collector by capturing
many packets.

We define a dedicated timer for each flow using P4 registers
to measure the packet processing time in the switch and
implement it as follows. We store the current timestamp of
the packet in the register and then subtract this value from the
timestamp of the next packet. By comparing the subtracted
result with an arbitrary threshold, the switch decides to either
clone or forward the packet of that flow.

REACTNET exploits the cloning mechanism of pro-
grammable switches to send a copy of the telemetry informa-
tion of each packet. The switch forwards the cloned packets
via the egress port connected to the switch. However, having
a direct link connection from the switch to the collector is
unnecessary since we can modify the packet header to reach
the collector according to its destination IP address.

We use Logstash [22] to filter the received packets by
providing the key elements or features in the configuration file.
REACTNET stores the filtered data sent from Logstash into
the Influx database. We use the Influxdb plugin of Logstash
to send the data to Influxdb.
Adjusting the network by changing the priority of the
packets. We use a set of registers to set the priority for
different packets. REACTNET updates the values of these
registers via simple switch API. We check the value of the
corresponding register to set the proper priority for the packet.
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Figure 2. Our evaluation network topology for the video streaming applica-
tion.

V. PERFORMANCE EVALUATION

This section reports the performance of REACTNET when
applied to a video streaming scenario. We also test the
performance of the ML classifiers on an IoT trace, including
≈ 600k packets.
Testbed network. We create a dumbbell topology with two P4
switches in Mininet connected with a 2Mbps link. We attach
two hosts to switch S1 to generate the traffic, namely, H1 for
video streaming and H2 for UDP traffic. We generate UDP
traffic using Iperf. The two hosts, i.e., H3 and H4, connected
to switch S2 receive traffic from the corresponding senders
(see Fig. 2). We also attach another host, i.e., collector, to the
switch S1 to receive the cloned packets.

A. Video Streaming Scenario

This experiment aims to show the capability of REACTNET
to adjust itself for a better QoE for the video streaming
application. We stream the ”Big Buck Bunny” video three
times using FFmpeg [23]. We first stream the video without
sending any background traffic. This experiment aims to obtain
the QoE performance metrics as the ground-truth value for
comparison. Then, we stream the video with background
traffic without adjusting the network, i.e., without REACTNET.
Finally, we stream the video with background traffic and apply
REACTNET, i.e., with REACTNET. The UDP client H2 sends
2Mbps traffic to the corresponding receiver host, i.e., H4,
after 10 seconds in both scenarios. The main reason for such
a design choice is that it gives the system time to collect
telemetry information from the current applications running
in the network. Otherwise, we could train the system offline.

We use Logstash to collect and label the cloned packets
from the streaming video and UDP traffic. We also tune the
Logstash configuration to a higher timer precision to get all
cloned packets. We apply higher priority to the packets of the
video traffic in S1, while the priority of other flows remains
at their default value.
Impact on the total frame rate. The frame rate of the original
streaming video is 30 frames per second (FPS). The metric for
the scenario without applying REACTNET is 26.11 FPS, while
with REACTNET, it is 28.92 FPS.
Impact on the image quality metric. We report the Peak
Signal-to-Noise- Ratio (PSNR) as the main image quality met-
ric. PSNR indicates the ratio between the maximum possible
value of a signal and the power of distorting noise that affects
the quality of that image [24]. A higher PSNR value for the
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Figure 3. The effect of REACTNET on the PSNR metric of the streamed
video.

0 400 800 1200 1600 2000
Frames

0.0

0.2

0.4

0.6

0.8

1.0

S
S

IM

w/ReactNET wo/ReactNET Original

Figure 4. The effect of REACTNET on the SSIM metric of the streamed
video.

quality of images in video streaming applications is preferred.
For the reference image f and the disported image g, with the
size of M ×N , the PNSR in [25] is defined as follows.

PSNR(f, g) = 10 log10(255
2/MSE(f, g)) (1)

whereas:

MSE(f, g) =
1

MN

M∑
i=1

N∑
j=1

(fij − gij)
2 (2)

Fig. 3 shows that after adjusting the traffic rate of the video
stream, the PSNR value of the streaming video significantly
improves since the REACTNET sets the higher priority to those
packets. The main reason for such an improvement in PSNR
values relies on adjusting the priority of the streaming packets
on the switch by using REACTNET.
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Figure 5. The impact of using REACTNET on the VMAF metric of the
streamed video.

Fig. 4 shows the Structured Similarity Index Method (SSIM)
metric of the streamed video. The SSIM is a full-reference
quality metric that checks the similarity of the reference and
the test images by combining three factors: loss of correlation,
luminance distortion, and contrast distortion. The value of
SSIM varies in the range of [0,1], and zero shows no cor-
relation or similarity, and the value of 1 indicates both images
are identical. The streamed video achieves better SSIM when
applying REACTNET.
Impact on the video quality metric. Netflix introduced Video
Multi-Method Assessment Fusion (VMAF) [26] as a video
quality metric. VMAF assesses video quality after re-scaling
and compression to detect degradation. The VMAF score
ranges from 0 to 100, with higher values indicating better
quality. As shown in Fig.5, after adjusting the traffic priority
for video streaming, the VMAF score of the stream closely
approximates the ground-truth value.

Figures 6(a) and 6(b) compare the identical frame of the
”Big Buck Bunny” for the video outputs with background
traffic for scenarios without and with REACTNET. The receiver
loses many frames before applying the ML classifier with
REACTNET resulting in suboptimal video quality for human
observation.

B. Accuracy of ML Classifiers of REACTNET

As the second application of our designed self-adjusting
system, this section reports the accuracy of ML classifiers in
classifying the packets of different flows. We use the traffic
trace of IoT devices [10] and use Tcpreplay to inject the
packets into the network from host H2 in Fig. 2. The trace
contains ≈ 600k packets, and we replay them according to
the capacity of the link between switch S1 and switch S2 in
our topology. Table II shows the name of each class with the
assigned number that we use in the classifiers.

We use the port numbers of different applications in the
trace to label the mirrored data in our dataset. The main reason

Name Class

Energy 0
Appliances 1
Hubs 2
Health-Monitors 3
Cameras 4
Others 5

Table II
THE IOT CLASS NAMES AND THEIR ASSIGNED NUMBERS IN THE

CLASSIFIERS

for such a choice is that IoT devices use a few port numbers
compared with non-IoT devices. In addition, the devices made
by the same manufacturer tend to use standard port numbers.
This choice made our classification based on the IoT signaling
pattern, which helped us easily classify the flows. We have
five different classes, namely, energy, appliances, hubs, health-
monitor, cameras, and others that indicate non-IoT devices.
We used three models of ML methods, namely k-Nearest
Neighbour (KNN), Decision Tree (DT) and Random Forest
(RF) on the collected IoT data-trace to make a classification
towards reaching optimal results. Table III shows that the
decision tree and KNN-based classification have the most
accurate results with 99% accuracy.

Table III
THE ACCURACY OF DIFFERENT ML CLASSIFICATION ALGORITHMS OF

REACTNET ON IOT TRACE.

Model Accuracy F1 score MSE Precision

Decision Tree 0.99 0.1 0.06 0.75
K-Nearest Neighbors 0.99 0.99 0.001 0.87
Random Forest 0.98 0.99 0.11 0.57

We plot the Receiver Operating Characteristic (ROC) curve
for DT, KNN, and RF packet classifiers in Figure 7. The
ROC curve shows the True Positive Rate (TPR) against the
False Positive Rate (FPR) for each class on the y and x-
axis respectively for different threshold [27]. Fig. 7(a) shows
the ROC curves for each class in II. For each class in the
DT methods, the ROC curves lie above the diagonal line
x=y. Notably, the minimum AUC for class zero (Energy) is
0.89, indicating that the model can effectively distinguish
between positive and negative classes. The ROC for KNN
methods for each class in Figure 7(b) show that the AUC for
classes 0 (Energy) and 3 (Health-Monitors) is 0.82. Lastly, the
ROC for RF in Figure 7(c) demonstrates superior performance
compared to the DT and KNN methods. The highest accuracy
is observed for classes 4 (Cameras) and 5 (Others), with an
AUC of 0.97.

VI. RELATED WORK

The vision of self-adjusting and “self-driving” networks has
recently received much attention [3], [28], [6], [29], [30]. It
is enabled by the increasing programmability and flexibility
of networks [4] as well as the success of AI in various
domains. Indeed, softwarization facilitates a more automated



(a) Video output with background traffic (b) Video output after using REACTNET

Figure 6. Comparison of the identical scene of the two video outputs and the impact of REACTNET on video quality.
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Figure 7. ROC curve results for different classifiers for five classes in the dataset.

administration, operation, and management of the networked
systems, and monitoring [31], [32], [29].

We review some research and studies in the self-driven
network area. ReNet [33] is a self-adjustable approach to
optimizing route lengths in demand-aware networks (DANs).
ReNet uses splay trees [34], a self-adjusting Binary Search
Tree (BST), to adapt the network based on optimizing topol-
ogy to facilitate routing issues. The system in [35] proposes
a self-driving management system based on intents to reduce
the complexity of network management.

AI-based approaches such as NetBOA [31] also generally
allow measuring and estimating critical system information
such as CPU performance or network latency. A deep re-
inforcement learning-based approach to coordinate microser-
vices in self-driving networks is proposed in [36] to manage
them based on traffic patterns.

The usage of ML has also been considered in the context of
data planes [37], [38], [1]. For example, SwitchML offloads
the distributed parallel training of part of machine learning
systems to the network to reduce the amount of exchanged
information and speed up their processing requirements using
programmable networks [38]. REACTNET currently relies on
an external entity to run the ML classification task. We
can offload the classification task of REACTNET to the pro-
grammable switches. However, a careful architecture design

needs to be considered due to the memory limitations of
programmable switches.

VII. CONCLUSION

This paper introduced REACTNET, a self-adjustable net-
work that can adapt to the application requirements given by
the network operators. Our system is built on two key enabler
technologies: programmable networks and machine learning.
Leveraging programmable networks enables the system to get
telemetry information from all ongoing packets without delay.
This provides more accurate data to our machine learning-
based classification algorithms. Our evaluations showed that
the system could tune the network to meet the QoE require-
ments for video streaming applications. Also, the machine
learning techniques are highly accurate in classifying the pack-
ets of different applications. We plan to extend REACTNET by
adding more sophisticated strategies to optimize the network
and leverage available resources.
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