
3596 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

Real-Time Link Verification in
Software-Defined Networks

Sanaz Soltani , Mohammad Shojafar , Senior Member, IEEE, Habib Mostafaei , Member, IEEE,
and Rahim Tafazolli , Senior Member, IEEE

Abstract—Software-defined networking (SDN) has been widely
adopted in different networks, such as datacenter and service
providers. The SDN controller has the entire network view and
is responsible for managing it. To obtain such a view of the
network, the controller employs link discovery protocols, which
are vulnerable to attacks such as link fabrication attacks (LFAs).
TopoGuard and TopoGuard+ are two major systems detecting
LFAs. This paper introduces a link latency attack (LLA) that can
bypass the defence mechanism of both systems. LLA can poison
the view of the SDN controller from the network topology and
causes outages, resulting in poor quality of service (QoS) or qual-
ity of experience (QoE). To mitigate this, we develop two machine
learning-based defence systems, namely machine learning-based
link guard (MLLG) and real-time link verification (RLV), to
preserve the required defence for LLA. The MLLG works when
the network topology rarely updates, while RLV can support
frequent updates. Furthermore, RLV trains itself over a link
latency dataset (LLD)– including latency data of fabricated and
normal links– that is captured from the ongoing packets in the
network. It also implements outlier detection techniques to iden-
tify a dynamic threshold for link latency. We test both systems
on different scenarios using Mininet and show that they achieve
reasonable results compared with current defence algorithms.
Specifically, RLV presents the highest detection performance (F1-
score) to 70% at less than 0.2% false-positive rate. The system
also supports the robustness features when the attack rates vary
from 3% to 7% in our simulated network.

Index Terms—Software-defined networking (SDN), link fab-
rication attacks (LFAs), link latency attack (LLA), machine
learning, link latency dataset.

I. INTRODUCTION

SOFTWARE-DEFINED network (SDN) simplifies the
management of the network devices, such as switches,

using an interface with a logically centralised controller. This
simplification leads to the widely used application of the SDN

Manuscript received 28 October 2022; revised 18 January 2023; accepted
18 January 2023. Date of publication 23 January 2023; date of current ver-
sion 9 October 2023. This work was funded by University of Surrey, 5GIC
& 6GIC (http://www.surrey.ac.uk/ics) and the German Ministry for Education
and Research as BIFOLD - Berlin Institute for the Foundations of Learning
and Data (ref. 01IS18025A and ref. 01IS18037A). The associate editor coordi-
nating the review of this article and approving it for publication was J.-H. Cho.
(Corresponding author: Mohammad Shojafar.)

Sanaz Soltani, Mohammad Shojafar, and Rahim Tafazolli are with 5GIC &
6GIC, Institute for Communication Systems, University of Surrey, GU2 7XH
Guildford, U.K. (e-mail: s.soltani@surrey.ac.uk; m.shojafar@surrey.ac.uk;
r.tafazolli@surrey.ac.uk).

Habib Mostafaei is with the Department of Mathematics and Computer
Science, Eindhoven University of Technology, 5600 MB Eindhoven, The
Netherlands (e-mail: h.mostafaei@tue.nl).

Digital Object Identifier 10.1109/TNSM.2023.3238691

Fig. 1. An example of the link discovery cycle in the OFDP.

in different domain networks, including wired and wireless.
In SDN, we can program the forwarding behaviour of devices
in the data plane, which gives us more flexibility to imple-
ment our desired functionalities [1]. The OpenFlow protocol
is one of the most popular realisations of SDN in commercial
networking equipment [2].

In the OpenFlow-based SDN, the controller utilises the
OpenFlow discovery protocol (OFDP) [3] to form the logical
view of the network. The OFDP involves periodic transmis-
sions of link layer discovery protocol (LLDP) [4] messages
from the controller to OpenFlow switches. Fig. 1 presents an
example of link discovery process in SDN with two OpenFlow
switches, namely, s1 and s2. In this process, the controller
creates LLDP messages and sends them to the switch s1 in
the data plane (see step (1) in Fig. 1). Each LLDP message
includes the data path ID (DPID) of the switch with a Port ID.
As LLDP packets are received via Packet-Out massages,
s1 distributes them across all its interfaces (see step (2) in
Fig. 1). By reaching the message to the destination switch s2,
it encapsulates LLDP as a Packet-In message and sends
it back toward the controller (see step (3) in Fig. 1). After
receiving LLDP, the controller recognises a link between two
switches and updates the network topology.

Link discovery procedure can be the target of several secu-
rity attacks, like topology poisoning attack [5]. Such an attack
falsifies the view of the controller to the network topology.
Link fabrication attack (LFA) [6] is an example of the topol-
ogy poisoning attack in which the adversary intends to add a
fabricated link between two switches, corrupting the view of
the controller [7]. The SDN market value grows every year
and will reach 32+ billion USD by 2025, according to the
report in [8]. This huge market value confirms the adoption of

1932-4537 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:41:51 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6724-3969
https://orcid.org/0000-0003-3284-5086
https://orcid.org/0000-0001-8282-1571
https://orcid.org/0000-0002-6062-8639

SOLTANI et al.: REAL-TIME LINK VERIFICATION IN SDNs 3597

SDN by many enterprises opening the door to several adver-
saries to attack the network of such businesses, e.g., LFA.
We need to analyse LFA since the cost of such an attack is
high. According to the report in [9], the average cost of a
Cyberattack is 3.86 million USD per incident.

A. Motivations

There are several defence mechanisms to mitigate the
risk of LFA, e.g., TopoGuard [6], TopoGuard+ [10], and
SPHINX [11]. Specifically, TopoGuard [6] monitors the
LLDP packets to detect LFA. TopoGuard+ [10] introduces
Port Amnesia attack that bypasses the defence systems of
TopoGuard and SPHINX. TopoGuard+ uses the attack to reset
the port type of the device – used by TopoGuard to detect
the link advertisements– and relay the LLDP toward the con-
troller. Motivated by this, we introduce a link latency attack
(LLA) that confirms the vulnerability of the TopoGuard+. The
adversary can use this attack to add a fabricated link into
the network and disturbs the view of the controller from the
network topology. We report that TopoGuard and TopoGuard+
are unable in preventing LLA.

B. Contributions

We present machine learning-based link guard (MLLG)
and real-time link verification (RLV) to preserve the required
defence for LLA and LFA. The MLLG works when the
network topology rarely updates, while RLV can support fre-
quent updates. Both systems can protect the network topology
from link fabrication attacks, including LFA and LLA. In
designing MLLG and RLV, we address the following key
challenges. Given the diverse link fabrication attacks, detect-
ing LFA and LLA launched through an out-of-band channel
is challenging. In such scenarios, the adversary initiates the
attacks without manipulating LLDP packets. This makes attack
detection a complicated problem. To address this issue, we take
the benefits of machine learning (ML) algorithms in imple-
menting outlier detection techniques to identify a dynamic
threshold for link latency. To train our proposed ML detec-
tion model, we create a comprehensive dataset which captures
the link latency values. The network topology can change by
adding a set of switches or links, and the RLV adapts itself to
the new topology conditions. To do this, we capture the LLDP
Packet-Out and Packet-In messages sent and received
by the controller and analysis the link latency values in the
presence of the various number of the switches. The MLLG is
suitable when there are no changes in the network topology.
However, the RLV detects attacks when the network topology
updates and leads to the following goals:

• Scalibility: When the network size changes, RLV scales
and achieves the highest detection rate in large-scaled
SDNs.

• Robustness: The RLV system is robust for changes in the
number of fabricated links, i.e., attack rates.

• Adaptable: RLV uses a wide range of ML techniques to
detect the LFA and LLA.

This work is an extended version of [12], where we
introduced the LLA and developed and implemented MLLG

to detect and prevent link fabrication attacks. Differently
from [12], in this paper, we add the following key
contributions.

• Designing and developing RLV as a real-time, robust
and scalable ML-based detection system against LFA and
LLA.

• Creating a comprehensive dataset on large-scale network
topology in SDN using a real-time time-series database.

• Enhancing our detection model by adding extra features
related to Packet-Out and Packet-In messages.

• Applying weighted ML classifiers to reduce the impact
of the unbalanced dataset and achieve an effective model
and a more realistic result.

• Evaluating the performance of our systems, RLV
and MLLG, in different scenarios implemented in
Mininet [13] and Floodlight [14] controller.

• Making our systems open-source and our results
repeatable.

The rest of the paper is as follows. In Section II, we
present LLA and the weakness of TopoGuard+ in attack
detection using an example. Section III presents our proposed
MLLG and RLV systems. The performance evaluation of both
systems comes in Section IV. We discuss the capabilities and
limitations of LLA and our proposed detection systems in
Section V. The related work is presented in Section VI. Finally,
Section VII concludes the paper.

II. LLA: LINK LATENCY ATTACK

In this section, we introduce a new type of link fabrication
attack called link latency attack (LLA). To do so, we explain
our threat model in Section II-A. After that, we state that the
attack occurs in the network in Sections II-B and II-C.

A. Threat Model

Our threat model assumes that the adversary compromises
one or more hosts. The adversary can relay LLDP mes-
sages through an out-of-band communication channel which
is provided in a wire or wireless connection between two com-
promised hosts. We call this attack LLA. The adversary intends
to add a fabricated link between two switches by relaying the
LLDP message over the out-of-band communication channel.
The adversary exploits the end hosts to inject unwanted traf-
fic, such as ARP, to increase the packet processing time of the
switches. Consequently, the response time of the switches to
the controller packets, such as probe packets, increases. The
adversary can relay LLDP messages among switches using this
long response time and insert the corresponding fabricated link
between switches. The network performance can be negatively
impacted by misleading the traffic. Consequently, this traffic
detouring results in poor quality of service (QoS) or quality
of experience (QoE), to name a few [15], [16].

We now describe how the adversary can bypass through
LLA the defence mechanism of TopoGuard+. TopoGuard+
includes a link latency inspector (LLI) module to monitor link
latency values in the network. LLI can detect fabricated links
by measuring the latency of links caused by out-of-band chan-
nels when transmitting LLDP packets. The LLI periodically

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:41:51 UTC from IEEE Xplore. Restrictions apply.

3598 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

Fig. 2. An example of the weakness of TopoGuard+ in detecting LLA.

issues probe packets to measure and capture the round trip
time (RTT) between the switches and the controller. Every
switch responds to the received LLDP packets. Consider two
switches, called s1 and s2, connected to the controller. The
link latency of the probe packets sent to s1 and s2 is also
given by Tp1 and Tp2 , respectively. The LLI calculates link
latency Tl between switches based on eq. (1),

Tl = TLLDP − Tp1 − Tp2 , (1)

where TLLDP represents the propagation latency of the LLDP
message. The controller adds a timestamp to the sent LLDP
packet to the switches and keeps track of the difference
upon receiving the packet. Furthermore, LLI calculates a link
latency threshold Th based on the values of inter-switch
latency Tl for previous LLDPs, as represented in eq. (2),

Th = q3 + 3 ∗ (q3 − q1), (2)

where q1 and q3 indicate the lower and upper quartiles of
latencies, respectively. LLI verifies the link’s validity by com-
paring latency Tl and threshold Th and raises a security alarm
in case of suspicious delay, i.e., Tl > Th .

Running Example: The adversary can bypass the
TopoGuard+ by launching LLA. We configure a time
series database using InfluxDB [17] to store and visualise link
latency data. Fig. 2 is an example view from InfluxDB, which
presents the weakness of TopoGuard+ in detecting LLA.
Specifically, the green points show latency values for normal
links, and the red line indicates the calculated threshold Th
using eq. (2). TopoGuard+ can correctly detect all blue ‘+’
marks above the red line as attack points. However, it fails to
detect abnormal link latency values located in the highlighted
area, which contains LFA ‘+’ marks below the red line and
all LLA purple triangle points.

The proposed LLA consists of two phases, namely, overload
phase and relay phase. In the former phase, the adversary
injects a huge amount of ARP traffic into the network, while in
the latter phase, it relays the received LLDP packets from the
switches via the out-of-band channel. The adversary leverages

Fig. 3. The considered schematic of LLA. Fig. 3(a) includes compromised
hosts send huge ARP traffic toward s1 and s2 to increase the RTT of probing
packets. Fig. 3(b) explains that compromised hosts relay the LLDP packet
through the out-of-band channel.

at least two compromised hosts for this purpose and frequently
switches between two phases based on the LLDP propagation
interval. To measure the LLDP packet interval, the adversary
keeps the time difference between two consecutive packets.

The compromised hosts take two different roles during the
attack; flooder and listener. In the overload phase, they play
the role of flooder and send ARP floods to the switches. In the
relay phase, as a listener role, they both listen to LLDP packets
and relay them toward each other and the peer switches. Fig. 3
shows how the attack takes place in our scenario.

B. Overload Phase

During this phase, flooder hosts send ARP flooding traffic
to switches s1 and s2 (see Fig. 3(a)). This traffic significantly
increases the number of table-miss entries on the switches
and directs a huge number of Packet_In messages toward
the controller. Handing such an amount of packets results in
increasing resource usage of the Open vSwitch (OVS) dae-
mon from the switches. Consequently, the daemon pushes the
incoming packets into the queues to be processed later. This
results in either growing the probing packet’s RTT or even
dropping the packets due to the congestion on the ingress port
of the switch. The increment in the RTT of the probe packets
is enough for the adversary to launch the relay phase.

C. Relay Phase

In this phase, both hosts, i.e., h1 and h2, stop flooding ARP
packets and change their role to listener for the incoming
LLDP packets. When the controller issues LLDP packets, the
adversary changes the attack phase from the overload phase
to relay phase. Fig. 3(b) shows that upon receiving the LLDP
packet in the relay phase by host h1, it forwards this packet to
host h2 through a dedicated link. Host h2 does the same task
and forwards the LLDP packet to switch s2. At this point, in
the view of the switch s2, this is a new LLDP packet from a
switch, and it has to forward this packet to the controller.

The controller receives the LLDP response packet, finds a
change in the network topology, and updates it. To do so, it
performs a check on the threshold and received LLDP packet
latency using eq. (1) and eq. (2). Here, the values of Tp1
and Tp2 are high compared with the normal LLDP pack-
ets since they experience high latency in the overload phase.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:41:51 UTC from IEEE Xplore. Restrictions apply.

SOLTANI et al.: REAL-TIME LINK VERIFICATION IN SDNs 3599

However, by applying eq. (1), the latency of the extra link
between switches s1 and s2, i.e., Tl , stays in the valid range
from the controller point of view, i.e., Tl ≤ Th . Even in some
cases, the calculation shows a negative value for Tl . Hence,
the LLI module in TopoGuard+ fails to detect the LLA, and
finally, the controller updates its view of the network topology
by adding an extra link between switches s1 and s2.

By deeper investigation through the TopoGuard+ source
code, we realised that the implementation strategy used in
this framework for measuring the control link latency leads our
proposed LLA more cost-efficient for the adversary. By initiat-
ing the first overload phase, control link latency, i.e., Tp1 and
Tp2 , increases to a high value. However, the abnormal obser-
vation is that TopoGuard+ freezes on this value and never
decreases it even after stopping the overload phase. It means
that the adversary does not need to sustain or repeat the over-
load phase to keep the latency values high. This vulnerability
in TopoGuard+ implementation is because the controller does
not initiate a new probing packet toward the switch without
receiving the answer for the previous one.

Example Scenario: LLA can be applied in real-world attack
scenarios such as SDN-based vehicular network [18]. In such
scenarios, OpenFlow switches take the role of roadside units
(RSUs). Hosts could connect to the RSUs and can be surveil-
lance computers, roadside control platforms and edge servers.
These hosts communicate with each other through wired or
wireless channels. LLA creates a fabricated link that misleads
the shortest path decision between two RSUs. It detours the
traffic to a different path for the vehicles.

III. COUNTERMEASURES

This section describes our two proposed countermea-
sure systems. We first explain the architecture of MLLG
in Section III-A. Then, we introduce RLV architecture in
Section III-B and describe how RLV can protect network
inter-switch links in real time against the LLA and LFA
threats.

A. MLLG: Machine-Learning Link Guard

MLLG leverages ML techniques to protect the network
from the LFA and LLA. This system classifies LLDP packets
through ML models using a predefined dataset that contains
different link fabrication attacks. The controller of MLLG
verifies the received LLDP packets by checking their corre-
sponding link latencies with the issued time. This verification
results in either dropping the packets or updating its topology
graph. We refer to [12] for the internal architecture of MLLG.

MLLG tracks received LLDP packets using a dataset. To do
so, it checks Packet-In messages and records their prop-
agation time which is the input for ML classifiers. Then,
packets are classified using well-known classification algo-
rithms, including random forest (RF), multi-layer perceptron
(MLP), K-nearest neighbours (K-NN), support vector machine
(SVM), logistic regression (LR), and Naive Bayes (NB). We
train the classifiers using 80% of packets in the dataset and the
remaining ones for testing. We refer to [12] for more details
on the system and its implementation.

Fig. 4. The general architecture of RLV system.

B. RLV: Real-Time Link Verification

Our proposed system, called real-time link verification
(RLV), uses ML techniques to detect LLA and LFA in SDN.
In what follows, a detailed description of RLV architecture
and ML model configuration and implementation is given.

1) RLV System Architecture: Fig. 4 illustrates the hierar-
chical architecture of the RLV system, including three planes:
i) data plane, ii) control plane, and iii) management plane.
The overall workflow of the system works in the follow-
ing sequence. 1 The SDN controller periodically generates
LLDP and probe packets in a specific time interval. Then,
it forwards the generated packets to the data plane switches.
2 Upon receiving the LLDP packet by the switches, they

issue a response to each LLDP packet and send it back to
the controller. The controller collects LLDP response packets,
extracts required metrics, and vectorizes them in batch form.
3 The controller makes a batch of latency values provided

by switches–when it needs to verify the validity of the values
with their associated delays using RLV. Using the batch tech-
nique reduces the communications overhead of the system.
4 RLV analyses each vector based on the ML classification

model and forwards its decision toward the controller. The
controller either drops the LLDP packet or updates the topol-
ogy database using the outcome of RLV. 5 The classification
results and new LLDP data are stored in the dataset. We use
InfluxDB to store our dataset. Moreover, human analysts play
an important role in monitoring the accuracy of imported data
to the dataset.

We deploy RLV on a separate server equipped with high
processing capacity to minimise the processing time required
for link verification and model regeneration. However, this
deployment might raise several security concerns, such as
spoofing or information leakage risks. To mitigate these risks,
we implement a mutual authentication of the controller to the
RLV server and the RLV server to the controller. To this end,
we utilise a certificate-based mechanism verified by a remote

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:41:51 UTC from IEEE Xplore. Restrictions apply.

3600 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

access dial-in user service (RADIUS) server [19]. In addition,
we encrypt the communication channel between the controller
and the RLV server using SSL/TLS.

2) Link Latency Analysis: The main focus of the RLV is
on link latency, which is calculated based on LLDP messages
and TLLDP . Some network situations might impact LLDP
propagation time, i.e., TLLDP and consequently increase the
link latency. To observe the effects of network size on LLDP
processing time, we examine TLLDP in the sense of different
network environments. To this end, we first formulate how
network size can impact the CPU usage of the controller and
TLLDP . Then, we investigate the impact of network topology
and background traffic on TLLDP .

Network Size: Assume an SDN graph G(V,E) with V
switches and E inter-switch links, where each switch has max-
imum M ports. Let Pt

out and Pt
in be the number of LLDP

Packet-Out and LLDP Packet-In messages at tth dis-
covery cycle, respectively (see Fig. 1). Using Eq. (3), we
calculate N t

G as the total number of LLDP messages the
controller needs to process.

N t
G = Pt

out + Pt
in =

V∑

i=1

M∑

j=1

pij + 2E , (3)

where

pij =

{
1, If port j is active on switch i,
0, else.

(4a)

Eq. (3) shows that any update in network size, i.e., the num-
ber of switches (V), active ports (a subset of M), and links (E),
can change N t

G . Fig. 5 illustrates the impact of changing N t
G

on the CPU load of the controller and TLLDP . Each experi-
ence is repeated 40 times, and the average is computed with
95% confidence intervals. The result in Fig. 5(a) shows that
as N t

G increases, CPU load also increases. For example, for
N t

G = 800, CPU load grows ≈ 8x compared with N t
G = 10.

The reason is that the controller must process more LLDP
packets in one discovery cycle. Moreover, the higher CPU
utilization can impact the average TLLDP since the controller
needs more time to process the incoming LLDP packets and
calculate TLLDP based on extracted timestamp. As shown in
Fig. 5b, TLLDP increases with N t

G where it reaches average
≈ 30ms for N t

G = 800.
Network Topology: According to Eq. (3) and Fig. 5, we

realised that TLLDP could be influenced by the network size
regardless of how switches are connected to each other. Fig. 6
shows the Cumulative Distribution Function (CDF) of aver-
age TLLDP for two network typology types with different
network sizes. We consider a linear topology, commonly stud-
ied in previous works on LFA [6], [20], and a fat-tree topology
one of the most popular network typologies in large data cen-
tres [21]. The results show that despite using two different
types of network typologies, the TLLDP intervals are approx-
imately the same until the typologies have the same network
size or N t

G . For example, TLLDP intervals for fat-tree with
k = 4 and linear with n = 30, are same and less than ≈ 40ms
for nearly 100% LLDP messages, when we have N t

G = 145.
By updating the network typology, for example from k = 4

Fig. 5. Impact of increasing the number of LLDP messages, N t
G , on average

CPU load (a) and TLLDP (b).

Fig. 6. CDF of TLLDP for four different network topologies.

to k = 6 in fat-tree, we observed that the TLLDP interval
increases because of N t

G growth to 500.
Background Traffic: We injected background traffic to see

the impact of it on TLLDP . We use the traffic generator [22] to
generate traffic flows according to Websearch workload [23].
The generated traffic has a Poisson Distribution. The inter-
switch link capacity of the links is 1Gbps, and we use 50%
of the link load for the background traffic. Then, we cap-
tured the LLDP packet and calculated TLLDP values. Fig. 7
illustrates the CDF of average TLLDP . We only show some
representative results for two network sizes, including 40 and
140 switches. The results show that for each network size,
TLLDP presents approximately the same patterns with and
without background traffic. Some minor difference is observed
in the network with the high number of switches. For example,
for switch=140 and without background traffic, nearly 100%
of TLLDP are less than 90 ms. By imposing the background
traffic, we observed that only less than nearly 1% of LLDP
has latency higher than 90 ms. The reason is that in large-
scale networks, the background traffic can slightly impact the
switches’ buffer and LLDP queuing time in the controller,
which could increase TLLDP in less than 1% cases.

3) Dataset Preparation: In order to train our proposed
detection method, we need to maintain a large set of labelled
network datasets with link properties. The dataset should con-
tain data of fabricated and normal links which are extracted
from LLDP packets. The link latency dataset should be rep-
resentative of real-world network behaviours, which typically
have more data for the normal links and less data for the fab-
ricated ones. We created a real and large-scale link latency

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:41:51 UTC from IEEE Xplore. Restrictions apply.

SOLTANI et al.: REAL-TIME LINK VERIFICATION IN SDNs 3601

Fig. 7. CDF of TLLDP , without and with background traffic (500 Mbps
with Poisson distribution) for the different number of switches.

TABLE I
SUMMARY DESCRIPTION OF LLD

dataset (LLD) that contains 1,024,885 LLDP packets in total.
The dataset contains information from two different classes,
where the normal links belong to class 0, and fabricated links
are part of class 1. We considered ≈ 2% of LLDP for class 1
and ≈ 98% for class 0. Following this approach to maintain the
dataset, the imbalance ratio (IR) in LLD is 50 : 1. Therefore,
it can be considered a highly imbalanced dataset [24]. Table I
summarises the data employed in LLD, including the num-
ber of samples, number of attributes, name of minority and
majority classes, class distribution, IR and imbalance degree.

We modify the Floodlight controller to extract the following
timing features in collecting LLDP packets. This procedure
happens on each link discovery cycle of the controller, and
we record these features in a nanosecond time scale.

• TLLDP : Upon arriving a Packet-In message, we cap-
ture LLDP propagation time (TLLDP) by taking the
difference between sendTime and receiveTime parameters
of each LLDP packet.

• Tp1 and Tp2: We capture the round trip time between
the controller and switches to measure the control link
latency of the ingress (Tp1) and egress (Tp2) ports.

• NPO , NPI and NSW : We count the number of LLDP
Packet-Out and Packet-In messages sent/received
by the controller to update the values of NPO and NPI .
As discussed in Section III-B2, the network size updates
can be tracked by accounting for these messages. In addi-
tion, we capture the number of switches in NSW based
on the topology information database.

The LLD provides the following two major capabilities.
• Diversity: To enrich the diversity of the link latency value

in dataset, a set of network topologies is considered by
varying the number of switches from 20 to 200. In addi-
tion, we launch different link fabrication attack scenarios
categorised into two major groups: LFA and LLA. We
also launch several attacks imposed at the same time to

TABLE II
DATA DISTRIBUTION IN LINK LATENCY DATASET

Fig. 8. Impact of adding new switches to the network on the link latency
distribution.

capture the link latency value with a different number of
attacks.

• Scale: We run the controller for nearly three days to col-
lect 1,024,885 LLDP packets including 10,095 (1%) for
the LFA, 10,095 (1%) for the LLA, and 1,004,695 (98%)
for the normal inter-switch links.

Table II and Fig. 8 present the detail of captured data and the
latency interval distribution in LLD. In our experiments, we
have separated the dataset into 80% for training and 20% for
the testing phase.

4) ML Training Algorithms: We define an imbalanced
binary decision problem [25] where the trained ML algo-
rithm identifies a link as either fabricated (class 1) or normal
(class 0) while the minority class (fabricated link) in the
dataset outnumbers the majority class (normal link). A highly
imbalanced dataset could significantly impact the performance
of ML algorithms. The standard ML classifiers consider the
same weights for two classes. As a result, the model ignores
the minority class and biases toward the majority class. To do
this, we can implement both oversampling and undersampling
strategies. Oversampling strategy injects artificial data into the
dataset to oversample the minority class. At the same time,
in the undersampling one, the real data is removed from the
dataset to undersample the majority class. However, apply-
ing these approaches to create a balanced dataset threatens
the trustworthiness of the original dataset and causes losing

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:41:51 UTC from IEEE Xplore. Restrictions apply.

3602 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

real data, which could lead to mistraining the model. Another
approach to coping with the imbalanced dataset problem is
the weighted ML classifier, which assigns specific weights to
different classes based on their proportions. In this method,
the importance of the minority class increases by giving it a
high weight, while a low weight is assigned to the majority
class. In our scenario, we train our ML model using several
weighted ML classifiers to increase the impact of the minority
class (fabricated link) and avoid the bias phenomenon model
for the majority class (normal link) due to the significant
proportion.

Classification Models: In general, ML-based classification
models can be categorised into single and ensemble mod-
els [26]. For a fair comparison, we select KNN and SVM
algorithms as single classifiers and RF and MLP algorithms
as ensemble classifiers. Moreover, these four algorithms were
the top-performing classifiers in our previous work in detect-
ing fabricated links [12]. They also proved their efficiency
and effectiveness in many pieces of research in network secu-
rity [27]. In the following section, we describe the capabilities
and advantages of each algorithm.

• K-Nearest Neighbour (KNN): The KNN algorithm works
based on distance functions such as Euclidean distance.
To classify a new data sample, the KNN identifies the K
nearest neighbours and then computes the average values
of such neighbours. Compared with other classifiers, the
KNN is simple, easy to implement and has the lowest
computational complexities of O(n logK) [27] where n
is the number of training instances.

• Support Vector Machines (SVM): The SVM algorithm
seeks to find the best possible hyperplane which sepa-
rates data instances between two classes. Using kernel
functions, the SVM improves classification performance
through nonlinear solutions. The complexity of SVM is
O(n2) [27], which is slightly higher than the other classi-
fiers. However, the SVM is proved to be useful in several
applications, specifically when the data are not linearly
separable [28].

• Random Forest (RF): The RF classifier relies on ensemble
learning, which often performs better than other clas-
sifiers. In this learning method, RF first constructs t
independent decision trees using different samples of the
training data and a random subset of attributes. Then an
average outcome is calculated based on estimations from
such trees. RF attracts many researchers’ attention due
to its low computational complexity and high accuracy.
Due to the multi-threading capability of RF, the complex-
ity of this classifier is O((tmn log n)/h), where m is the
number of attributes, and h is the maximum number of
threads [27].

• Multi-Layer Perceptron (MLP): MLP is the most popu-
lar model in artificial neural networks (ANN). It uses a
back-propagation training algorithm to improve the accu-
racy of predictions. It consists of a large number of
interconnected nodes, which is called neuron. MLP is
commonly implemented in two hidden layers with a feed-
forwarding structure. The computational cost for training
MLP is O(mnu), where u is the number of neurons.

Hyperparameter Optimisation: We use the grid search (GS)
algorithm [29] as a hyper-parameter optimisation technique.
GS algorithm tunes all possible combinations of parameters
and identifies the optimal set. The accuracy measure is gen-
erally considered as the objective function to be maximised.
However, in a highly imbalanced dataset, the accuracy can
be misleading. In this work, we consider F1-score (F1) as
the optimisation objective. For each model, the best parame-
ter value maximises the F1 in the training dataset, which is
computed as follows.

max
l

F1(l) = max
l

2× TPl

2× TP l + FP l + FN l
(5)

where l identifies the set of parameters, true positive (TP)
indicates the number of attack attempts correctly classified as
fabricated links, false positive (FP) denotes the number of nor-
mal links misclassified as fabricated links, and false negative
(FN) is the number of attack attempts misclassified as a normal
link.

To simplify the process, the parameters that have a less
significant impact on the model are fixed, and only the most
significant parameters are tuned. In addition, when the parame-
ter space is increased beyond a certain number, there is almost
no performance gain; instead, the model is more complex,
requiring a longer training time. Based on previous litera-
ture and our own experience, we select the following most
important parameters and relevant parameter space for each
algorithm to be tuned.

• KNN: We consider different values for K, ranging
between 1 and 100 with step of 10. It is observed that
the best value for K is 60.

• SVM: We consider different SVM kernels, including
linear, polynomial, radial basis function (RBF), and sig-
moid. As expected, RBF-based SVM performs relatively
better because our dataset is not linearly separable. The
regularization parameter denoted by C allows control-
ling the penalty assigned to misclassified samples. We
tune C with various values, ranging between 0 to 5000,
with a step of 500. For the considered dataset, C = 1000
performs the best.

• RF: We perform an analysis with RF using different val-
ues for the number of trees and the maximum depth,
ranging between 1 to 20. The splitting criterion including
Gini Index and Cross-entropy is also tuned. The classifier
shows the best results of 5 for estimators with a maximum
depth of 6 and Cross-entropy as the splitting criterion.

• MLP: We tune the number of hidden layers between 1
and 10. The learning rate is also tuned based on the
set {0.005, 0.001, 0.0005, 0.0001}. We also vary the
activation function used in each neuron considering set
{Identity, Sigmoidal, Tanh, Relu}. The best parameters
are obtained with 2 hidden layers, learning rate=0.001,
and ReLu as an activation function.

In summary, the optimised configurations are shown in
Table III, which are used throughout the rest of the paper.

5) RLV Implementation: We implement RLV in the
Floodlight controller. Our system consists of two main pro-
cedures to verify the validity of the links: (1) collecting the

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:41:51 UTC from IEEE Xplore. Restrictions apply.

SOLTANI et al.: REAL-TIME LINK VERIFICATION IN SDNs 3603

Algorithm 1 Real-Time Link Verification (RLV)
1: procedure LLDPLISTENER

2: while RecievedLLDP==ture do � Continue until all LLDP packets are received
3: tr =getCurrentTime() � Capturing the current time as received time of LLDP
4: ts = getTimestamp(lldp) � Extracting timestamp of LLDP
5: Tlldp = tr − ts
6: sI = getIngressId(lldp) � Extracting DPID of egress switch
7: sE = getEgressId(lldp) � Extracting DPID of ingress switch
8: Tp1 = getProb(sI) � Calculating link latency between the controller and ingress switch
9: Tp2 = getProb(sE) � Calculating link latency between the controller and egress switch

10: lldpList .add(Tlldp ,Tp1 ,Tp2) � Storing received LLDP information into a list
11: end while
12: sw =getSwitchNum()
13: pktin =getPktInNum()
14: pktout =getPktOutNum()
15: LINKSVERIFICATION(lldpList , sw, pktin , pktout)
16: end procedure
17:
18: Input: List of LLDP packets (lldpList), Number of switches (sw), Number of LLDP Packet-In (pktin), Number of LLDP Packet-Out (pktout)
19: procedure LINKSVERIFICATION(lldpList, sw, pktin , pktout)
20: batchQuery = GenerateBatchQuery(lldpList , sw , pktin , pktout)
21: model = getModel() � Loading pre-trained ML model
22: linkStatus = getPredictions(model , batchQuery) � querying the model for links validation
23: lldpList .setLinkStatus(linkStates) � Relating link status to each LLDP packet in the list
24: for each lldp ∈ lldpList do
25: if lldp.LinkStatus == 1 then � Detecting fabricated link
26: raiseSecurityAlarm(lldp)
27: else
28: updateTopology(lldp) � Updating topology graph only if the link is valid
29: end if
30: end for
31: updateDataset(lldpList , sw , pktin , pktout , linkStatus)
32: end procedure

TABLE III
ML ALGORITHMS AND OPTIMAL HYPERPARAMETERS

LLDP packets and (2) querying the validity of the links.
Algorithm 1 presents the pseudo-code of our system. The RLV
system works when the controller waits for the response of
issued LLDP packets. At this moment, the LLDPLISTENER

procedure is active and collects information regarding the
received packets. We now explain this procedure in more
detail.

Lines 1-16 (Extracting LLDP Information): In each link dis-
covery cycle, the controller extracts all required information
from the received LLDP packets and collects them into a
list. First, it calculates the TLLDP using the timestamp field.
Then, it measures the link latency between switches and the
controller, i.e., Tp1 and Tp2 . Since the network size can be
changed between two LLDP intervals, the controller also mea-
sures the number of switches, the number of generated LLDP

Packet-Out messages, and the number of incoming LLDP
Packet-In messages in each interval. Now, the controller
can verify the validity of the link. The controller passes the val-
ues of these parameters to the LINKSVERIFICATION module
and waits for the verification results.

Lines 18-32 (Query ML Model for Link Verification):
Instead of sending separate link verification queries toward
the defence model, the controller creates a batch of queries
using all LLDP parameters. This could help to reduce the over-
all query response time significantly. For each LLDP, if the
model detects the fabricated link, it first drops the LLDP, then
informs the network administrator by raising a major security
alarm and sets the status of the link to FakeLink. Otherwise,
it updates the topology database of the network and sets the
status of the link to ValidLink.

ML models can be adapted to network changes by retraining
the models according to the most recent information.

6) RLV Overhead: As we discussed, the SDN controller
triggers the link discovery process in a specific time interval.
For example, the link discovery interval is 15 seconds in
the Floodlight controller. The computation time of the link
discovery process at tth discovery cycle is equal to eq. (6),

L(t) = Nt .σt (6)

where Nt is the total number of LLDP packets traversing the
switches in cycle t and σt indicates the average processing
time for each LLDP in cycle t.

By implementing the RLV defence module, the controller
still keeps sending and receiving the LLDP packets with the

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:41:51 UTC from IEEE Xplore. Restrictions apply.

3604 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

Fig. 9. An example of LLA using a simple topology on the Floodlight controller.

previous computation time. The only difference is LLDP pro-
cessing time because each LLDP also needs to be sent toward
RLV for security purposes. Hence, the computation time of
the link discovery process in the case of using RLV is equal
to eq. (7),

L̂(t) = Nt .σt + ρt + γt (7)

where ρt indicates the processing time to query the link status
prediction from the model (line 22), and γt is the processing
overhead to update the dataset with the LLDP batch (line 31).
As a result, implementing RLV as defence system in SDN
controller imposes the extra overhead of ρt + γt .

IV. PERFORMANCE EVALUATION

In this section, we investigate the security and network
performance for the LLA attack and RLV defence system.
First, we present the network setup to run LLA in Section IV-A
and show the accuracy of the LLA attack in Section IV-B.
The performance of our proposed ML models is evaluated in
Section IV-C. We also discuss the capability of RLV in the
dynamic network size.

A. System Setup

We run our experiments on a physical server equipped with
an Intel Xeon CPU E5-2667 3.3GH VM with 32 CPU cores
and 190 GB RAM running Ubuntu server 18.04. We use
Mininet for the simulation and build the network topology
of Fig. 9(a). All the links connecting the hosts to the switches
have 5 milliseconds (ms) of delay, including the inter-switch
links.

We state that extending the size of the network results
in more LLDP packets being sent and received by the con-
troller, which can negatively impact the network bandwidth,
and consequently increase the LLDP propagation interval. To
minimise these negative impacts, we consider the maximum
bandwidth of our experimental network to be equal to 1Gb/s.
We run the Floodlight controller, including the RLV defence

system, on the same server to protect the network. We also
configured a time series InfluxDB [17] database to store the
collected LLDP data. InfluxDB is an open-source time-series
platform designed for real-time analytics. We implement the
ML classification part of the RLV in Python 3.7 using the
Scikit-learn library [30].

B. Running LLA Tests

We run LLA on simulated network topology to show the
weakness of TopoGuard+ in detecting the attack. For launch-
ing LLA, we build the network topology of Fig. 9(a) adopted
from [6]. There are two compromised hosts, i.e., h1 and h2,
connected to switches s1 and s3. They play the role of the
flooder and listener in the overload and relay phases of the
LLA. The two compromised hosts communicate via a dedi-
cated out-of-band channel with 10ms of link delay. To launch
the overload phase of the LLA, we use arping to send 1 mil-
lion ARP request messages with 1-μs interval toward the
switches. For relay phase, we use scapy [31] library in Python
to relay the received LLDP packets via the out-of-band channel
toward s1 and s3.

LLA Security Performance: To inspect the behaviour of
TopoGuard+ against LLA, we activated the Floodlight system
log. In this experiment, our goal is to demonstrate that
TopoGuard+ cannot detect LLA. Fig. 9(b) depicts the log
of TopoGuard+ before and after launching LLA. In normal
operation, all link latency values are less than the calculated
threshold value, which is ≈7 ms (see Fig. 9(b) lines 1-3).
Afterwards, we run the LFA and found that TopoGuard+
detects the attack (see Fig. 9(b) lines 6-7). It is because the
latency of received LLDP, e.g., 33ms, is greater than the
threshold, i.e., 15ms. Normally, the control link latency value
is around 1ms (see Fig. 9(b) lines 9 and 12).

In our next step, we launch the LLA through the overload
phase. We observe a spike in control link latency value to ≈
90ms (see Fig. 9(b) lines 17-18). To prevent overloading, the
Floodlight controller uses a simple throttle strategy. Since we

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:41:51 UTC from IEEE Xplore. Restrictions apply.

SOLTANI et al.: REAL-TIME LINK VERIFICATION IN SDNs 3605

issue the ARP packets for a short time, the controller can-
not detect floods. We apply the relay phase at this point (see
Fig. 9(b) lines 19-22) and observe that TopoGuard+ fails to
detect the attack. The result is a bidirectional fabricated link
between s1 and s3 that is added as a normal link to the network
topology.

Running Example: The adversary can insert the fabricated
link using LLA even in the presence of TopoGuard+. We now
show a running example of LLA using a simple topology on
the Floodlight controller. We take a snapshot of our network
topology from the WebUI of the Floodlight controller in Fig. 9
before and after launching the LLA. Fig. 9(c) presents the
controller view of the current links in which there is no
link between switch s1 with DPID [00:00:00:00:00:00:00:01]
and switch s2 with DPID [00:00:00:00:00:00:00:03]. However,
after launching the attack, the controller misleads into believ-
ing a direct link between these two switches (see Fig. 9(d)).

C. RLV Performance Evaluation

To assess the performance of our proposed defence model,
first, we run RLV on the Floodlight controller. Then, the dif-
ferent scenarios of link fabrication attacks, including LLA
and LFA, are launched on a set of linear network topolo-
gies where the number of switches varies from 20 to 200.
We consider a linear topology commonly studied in various
previous works on link fabrication attack [6], [20] to evaluate
the performance of the defence algorithms. In addition, some
compromised hosts are connected to several switches to initiate
the mentioned attack scenarios. Next, the real-time decisions
of RLV in distinguishing between the normal and fabricated
links are analysed. We evaluated the performance of RLV by
measuring a broad range of ML metrics, including numeri-
cal metrics, such as F1 and Cohen’s kappa (Ka) [32], and
rank metrics, such as receiver operator characteristic (ROC)
and precision-recall (PR) curves. The objective is to identify
effective ML algorithms as the RLV model. Finally, we test the
scalability and robustness of the RLV system and investigate
its performance in the presence of background traffic.

1) Numerical Evaluations: True positive rate (TPR) and
false-positive rate (FPR) are two numerical metrics which
are widely used to evaluate the performance of ML-based
attack detection models. TPR, which is also known as recall
or detection rate (DR), identify the fraction which is correctly
classified as fabricated links, while FPR, which is also called
false alarm (FA), presents the rate of normal links that are
misclassified as fabricated links, measuring using Eq. (8) and
Eq. (9),

TPR =
TP

TP + FN
(8)

FPR =
FP

FP + TN
(9)

where true negative (TN) stands for the number of links cor-
rectly classified as normal links. Our proposed RLV algorithm
aims for high TPR while minimising FPR to detect more fabri-
cated links and prevent the unwarranted removal of the normal
link. In Section IV-D1, we discuss the trade-off between TPR

TABLE IV
THE DETECTION PERFORMANCE COMPARISON (%)

and FPR in more detail and show the effectiveness of RLV in
balancing these two metrics.

We also evaluate the performance of our proposed RLV
algorithm by measuring precision (Pr) and F1 using Eq. (10)
and Eq. (11).

Pr =
TP

TP + FP
(10)

F1 =
2

Pr−1 + TPR−1
=

2× TP

2× TP + FP + FN
(11)

Pr values indicate the number of links classified as fab-
ricated links that are truly fabricated links. F1 considers a
weighted average of the TPR and Pr to provide a high attack
detection rate while reducing the false alarm rate.

As we mentioned in Section III-B4, the RLV classifier is
trained on the highly imbalanced dataset where the number
of fabricated links in class 1 is much less than the number of
normal links in class 0. The skewed data problem might bias
ML performance metrics, such as accuracy, and mislead the
final evaluation [33]. The high accuracy is not a reliable result
in using a highly imbalanced dataset because the classifier
is under-trained with the minority class data. It misclassifies
nearly all negative samples into the positive class. Ka met-
rics [32] is an alternative measure to the accuracy, particularly
in the imbalanced dataset. It measures the accuracy of the clas-
sifier while penalising random predictions, i.e., all-positive or
all-negative predictions, using Eq. (12)

Ka =
Ao − Ac

1− Ac
(12)

where Ao and Ac represent the observed accuracy and random
chance accuracy, respectively.

F1 is recommended as the appropriate evaluation met-
ric [34], [35]. It is a combination of TPR and Pr metrics
which is influenced by a balanced impact from the major-
ity and minority classes. We evaluate the performance of our
proposed RLV defence by measuring TPR, FPR, Pr, F1 and
Ka. Then, the obtained results are compared with those of
running TopoGuard+ [6] and MLLG [12] to show the effec-
tiveness of the RLV system. Table IV shows the performance
of the different classifiers of RLV against the classifiers in the
MLLG and LLI module in TopoGuard+. We find that among
the above three defence algorithms, RLV classifiers present
the best results in terms of F1, Pr, FPR and Ka.

MLP and RF classifiers in RLV achieve a reasonable TPR
≈ 60% and promising FPR, less than 0.6%, which leads

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:41:51 UTC from IEEE Xplore. Restrictions apply.

3606 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

Fig. 10. AUC-ROCs and AUC-PRs for RLV and MLLG on different ML algorithms.

to the highest rate of ≈ 68% for F1. The reason is that
RF classifies an incoming link based on judgments received
from several independent decision trees. This approach can
reduce the impact of high variance latency data in large-
size network typologies, as shown in our dataset in Fig. 8.
RF mitigates the effect of outliers in classification, particu-
larly when the latency intervals of the normal and fabricated
links overlap. Furthermore, MLP calculates the error rates
for each prediction through the backward propagation algo-
rithm, which leads to more accurate detection and the highest
performance.

Compared with MLP and RF algorithms, KNN shows a
great FPR of 0.19% but a lower TPR, i.e., 38.68%. This is
because KNN classifies each incoming link by looking at K
nearest neighbours. However, this approach fails to work cor-
rectly when the fake link point is mostly surrounded by normal
link points. Similar behaviour is observed for SVM, which
results in the lowest TPR and F1 rate of 32.66% and 46.57%,
respectively. The MLLG shows the highest TPR, more than
90%, at the cost of the significant rate for FPR ≈ 52%
and the negative impact of lowest Pr, F1 and Ka. Although
MLLG and RLV use similar ML algorithms, we observed that
MLLG shows the lowest performance in dynamic network
size. The main reason is that the MLLG model is trained
based on link latency values without considering the network
size. Therefore, MLLG is useful in networks with less fre-
quent topology updates. TopoGuard+ shows the lowest TPR,
i.e., 26.65%, while it has the better F1 rate compared with
MLLG. The reason is that the LLI module of TopoGuard+
could slightly update the latency history based on the new
arrival latency values [10].

2) Rank Evaluations: We now report the performance of
the RLV classifiers using ROC and PR curves. PR curves have
been considered an alternative to ROC curves for a highly
imbalanced dataset with skewed class distribution [36]. The
ROC curve illustrates TPR versus FPR in which the area under
the curve (AUC) is calculated to determine which classifier
best predicts the fabricated or normal links. In PR space, the
x-axis shows recall (same as TPR), and the y-axis stands for Pr
values. Figs. 10(a) and 10(b) show ROC curves and PR curves

of RLV and MLLG classifier models, respectively. RLV-MLP
(RLV-based MLP classifier) and RLV-RF (RLV-based RF clas-
sifier) curves dominate other ROC space and PR space curves
and achieve the highest AUC-ROC of 0.987 and 0.983 and also
highest AUC-PR of 0.789 and 0.746, respectively. Different
presentations of the curves in the ROC and PR spaces provide
a more informative view of the ML algorithm’s performance.
In the ROC space, RLV-MLP and RLV-RF curves are approx-
imately close to optimal (the upper-left-hand corner), while in
the PR space, there is still considerable room for improvement
to meet the optimal (upper-right-hand corner). PR curves illus-
trate differences between RLV-MLP and RLV-RF algorithms
that are not apparent in ROC curves. Looking at RLV-MLP in
RP curves can expose a clear advantage over RLV-RF.

D. RLV Performance in Different Network Scenarios

We selected MLP and RF as the best models for RLV and
MLLG. The reason is that Table IV and Fig. 10 show that
MLP and RF algorithms perform better than SVM and KNN
algorithms in terms of numerical evaluation results, such as
the F1 measure and the rank evaluation results, like AUC-
ROC and AUC-PR. We summarise reasons for the superiority
of these two classifiers over other algorithms listed below, as
discussed in Sections IV-C1 and III-B4.

• RF works based on ensemble learning which could miti-
gate the impact of high variance latency data, particularly
in large-scale network topology.

• MLP utilises the backward propagation algorithm to
improve the prediction results.

For the rest of this paper, we focus on RF-based RLV
and MLP-based RLV to investigate the RLV performance in
different network scenarios.

1) Scalibility: In this section, we report how RLV scales
when the network size changes by adding a set of switches
and links. For this purpose, we vary the number of switches
from 20 to 200, where the largest topology has 200 switches
with 198 inter-switch links. Fig. 11(a) shows that MLLG
has a perfect TPR rate, nearly 100%, while for RLV and
TopoGuard+ a downward trend is observed, ends in 200

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:41:51 UTC from IEEE Xplore. Restrictions apply.

SOLTANI et al.: REAL-TIME LINK VERIFICATION IN SDNs 3607

Fig. 11. Study of RLV, MLLG and TopoGuard+ performance for different number of switches.

Fig. 12. Impact of different attack rates on RLV-MLP and RLV-RF performance.

switches with ≈ 40%, 17%, and 0% TPR for RLV-RF,
RLV-MLP, and TopoGuard+, respectively. Looking at the FPR
rate in Fig. 11(b) exposes a critical trade-off between provid-
ing a high attack detection rate, i.e., TPR, and keeping a low
false alarm rate, i.e., FPR. Despite the best performance in
the TPR rate, MLLG experiences a dramatic upsurge in FPR.
However, TopoGuard+ and RLV achieve a low false alarm rate
of less than 1%. In addition, RLV-RF and RLV-MLP achieve a
high TPR rate compared with TopoGuard+ while they expe-
rience nearly the same false alarm rate. Hence, RLV has an
advantage over MLLG and TopoGuard+.

The downward trend of TPR in RLV and TopoGuard+ is
that by increasing the network size, the latency interval of
the fabricated link overlaps with the interval of normal link
latency. It makes attack detection more challenging and con-
sequently decreases the TPR rate. However, the TPR rate in
MLLG remains stable when the number of switches increases.
This is because the MLLG model is trained based on a single
topology, and the attack interval can be fixed as the network
size is changed. As a result, by increasing the number of
switches, almost all normal links are misclassified as fabri-
cated links. This leads to the perfect attack detection rate while
destroying normal links in the network.

The RLV exhibited superior Pr and F1 performance is
compared with other algorithms as shown in Fig. 11(c) and
Fig. 11(d), respectively. It means a trade-off between the gain
of attack detection (TPR) and the cost of false alarm (FPR).
RLV provides the best balance and achieves higher values in
Pr and F1.

2) Robustness: In the second experiment, the robustness
ability of RLV under different attack rates is investigated. To
this end, we increase the number of positive samples (fab-
ricated links) from 3% attack to 5%, and 7% attack in our
simulated network. Let α, β, and γ represent 3%, 5%, and 7%
attack rates, respectively. Fig. 12 shows TPR, FPR, Pr, and
F1 measures for RLV-MLP and RLV-RF on different attack
rates. For a fixed number of negative samples (normal links),
we have FPα = FPβ = FPγ and TNα = TNβ = TNγ .
Thus, we conclude FPR(α) = FPR(β) = FPR(γ) (see
Eq. (9)). Despite increasing the attack rate, we observed that
RLV still maintained its TPR rate with less than 1% changes.
For example, RLV-RF resulted TPR rate with 67.81%, 67.77%
and 67.22% for 3%, 5% and 7% attack, respectively (see
Fig. 12(b)). Thus, TPR(α) ≈ TPR(β) ≈ TPR(γ). This
result shows that the RLV provides a robustness algorithm for
attack detection under different attack rates. As we expected,
Pr metric exposes a minor increase between three attack
rates where the Pr for 7% attacks has advantage over other
rates, i.e., Pr(α) ≤ Pr(β) ≤ Pr(γ). This increase exists
because we have TPα ≤ TPβ ≤ TPγ (see Eq. (10)).
By considering the value of Pr and TPR, it is obvious that
F1(α) ≤ F1(β) ≤ F1(γ) as we can see in obtained result in
Fig. 12.

3) Background Traffic: In this section, we investigate the
accuracy of the RLV system with various levels of background
traffic. We measure TPR, FPR, Pr, and F1 parameters to show
the consequences of Poisson-arrived traffic on the RLV model
performance. The results show that, in general, background

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:41:51 UTC from IEEE Xplore. Restrictions apply.

3608 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

Fig. 13. Impact of Poisson arrived traffic on RLV-MLP and RLV-RF performance.

traffic flows have a negligible impact on the performance of
RLV, and it still could work effectively compared with the
network without background traffic (see Fig. 13). In more
detail, slight decreases by only ≈ 0.16% and ≈ 1.17% are
reported in F1 for MLP and RF, respectively (see Fig. 13(d)).
The reason is that the Poisson-based traffic might impose
minor queuing delays in some switches and the controller,
which causes growth in TLLDP associated with fabricated and
normal links. This minor increase could cause a bit growing in
FPR (see Fig. 13(b)), and TPR (see Fig. 13(a)). Consequently,
due to Eq. (10), Pr slightly decreases (see Fig. 13(c)).

V. DISCUSSION

This section discusses different concerns and limitations of
our attack scenario and proposed countermeasures.

LLA: To place LLA in the network of a business or enter-
prise, the adversary must compromise two end hosts connected
through an out-of-band channel or a dual-homed host. In
addition, the adversary needs to issue some probe packets
over different intervals. This helps the attacker to gain some
information from the network regarding the probe packet
intervals issued by the controller. The frequency of issuing
probe packets by the controller of TopoGuard+ is five sec-
onds. Moreover, most network intrusion detection systems,
e.g., Snort and Bro, fail in detecting ARP floods when the
false positive rate is low [6]. Attackers exploit such vulnera-
bilities to initiate the overload phase in LLA and bypass the
defence mechanism of the SDN controller.

RLV deployment: We implement MLLG and RLV systems
in Floodlight controller by extending the defence system of
TopoGuard+ [6]. MLLG detects LFA and LLA when the
network topologies are stable over time without any updates.
However, it is a proactive solution that needs a dataset of link
latency information before taking action. In contrast, RLV is
a reactive solution that can create its dataset during network
operation. This feature of RLV makes it a ready to deploy
solution for many networks.

As we described in Section III-B, the RLV is considered to
be an independent component located outside the Floodlight
controller. The main reason behind such placement is that RLV
can be integrated with the other SDN controllers with mini-
mal effort. However, implementing RLV inside the controller
imposes a considerable effort to customise the controller’s
source code in case of using other SDN controllers rather than
Floodlight.

RLV performance: The RLV has high precision, meaning
that when it labels a link as fake, there is a high level of
certainty that it is fake. However, the recall (or TPR) is mod-
est, meaning the RLV may overlook some instances of fake
links (see Table IV). Note that in some applications, such as
the SDN IP backbone [40], which contains hundreds of high
bandwidth links, the RLV system must ensure high precision,
even at the expense of a modest recall, to prevent the unwar-
ranted removal of a normal link. We can improve the modest
recall in RLV through subsequent rounds of model training
and testing. In this case, the dataset would be refined and
completed iteratively. The repeated training, testing, and updat-
ing of data would eventually identify fake links that were not
identified during the initial training and testing. Additionally,
combined supervised machine-learning techniques and sophis-
ticated hyperparameter optimisation algorithms [41], [42]
might help to improve the modest recall and deserve fur-
ther investigation. However, we need to align the achieved
performance with the available resources.

The RLV-MLP and RLV-RF models can produce supe-
rior results in different scenarios. However, some factors
make these two algorithms different. First, training in MLP
algorithm is time-consuming and computationally intensive,
requiring parallel processing across multiple CPU cores. In
contrast, the RF algorithm is fast to train and requires less
computation [27]. In this paper, the training time for RLV-RF
was much less than RLV-MLP (a few seconds compared to
minutes). Therefore, we must consider the trade-off between
performance and computational resources before choosing the
best forecast model. For example, in networks with real-time
constraints and limited resources, RLV-RF can be a better
choice than RLV-MLP. Second, the MLP requires greater
expertise to tune the hyperparameters. In contrast, the RF does
not require much fine-tuning, and one can often obtain the best
results with default parameters.

If the burden of the neural network can be tolerated,
autoencoders (AEs) [43] could be used to detect unsupervised
anomalies [44]. In the AE, compressed encoding is obtained
from input, and decoding is used to reconstruct the data.
Normal input tends to have lower reconstruction errors since it
is close to the training data, while abnormal input tends to have
higher reconstruction errors. However, this assumption may
fail in our LLDP dataset, which contains outliers and noise.
The reason is that as the network size grows, the LLDP data
complexity increases, which means that extracted features,
such as TLLDP , are more likely to be shared between normal

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:41:51 UTC from IEEE Xplore. Restrictions apply.

SOLTANI et al.: REAL-TIME LINK VERIFICATION IN SDNs 3609

TABLE V
COMPARISON OF THE PROPOSED SYSTEMS WITH THE PREVIOUS DEFENCE ALGORITHMS AGAINST LFA

and abnormal LLDPs (see Fig. 8), resulting in mixed feature
values. In this situation, we can reconstruct data from both
normal and anomalous LLDPs properly. Denoising autoen-
coder [45] is one method to address this challenge, which
requires a source of clean, noise-free data to train. However,
real-world networks rarely provide such information. In this
case, the RLV model might need to isolate noise and outliers
from the input values, and the encoder is trained after this
isolation. We leave this aspect for future research.

RLV application: RLV works for networks with bounded
link latency when the latency variation is not high. However,
its applications in geographically distributed networks need
revisiting. To solve this problem, we could consider distributed
and centralised strategies. In distributed RLV, we can partition
the network into multiple small networks and run RLV for
each. Each part of the network owns a local RLV model, which
is trained based on the local link latency data. In this case, the
system will have multiple controllers, and their functionalities
can be synchronised. Different techniques can be applied here,
such as hot or cold synchronisation in distributed systems. The
centralised RLV divides the network into domains, and the
latency data aggregates from all domains to one centralised
controller. The latency data for each partition needs to be
labelled with domain ID before sending it to the controller.
A centralised RLV model is deployed in the controller and
trained based on the received data, which has a global view
and full information of the whole network. However, the RLV
model needs to reconfigure the domain ID as a new feature in
this case. We leave this aspect of our system for the future.

VI. RELATED WORK

The work [6] introduced LFA. The adversary can attack the
network without knowing the vulnerability of the controller or
the control plane. The goal of LFA is to add a fabricated link
between two switches in the network. TopoGuard [6] utilises

a port labelling strategy to detect LFAs. The controller clas-
sifies ports based on the received packet using three labels:
SWITCH, HOST, and ANY. The adversary can compromise a
host by pretending to be a switch so that it relays LLDP pack-
ets in TopoGuard. The authors of [10] introduced a new type
of LFA called port amnesia attack (PPA). The authors demon-
strated that bypassing port-labelling with TopoGuard could be
accomplished by switching the port status of the compromised
host from down to up during the propagation of the LLDP pro-
tocol. In addition, they designed TopoGuard+, which includes
a link latency inspector (LLI) module for detecting fabricated
links. Using the LLI, TopoGuard+ can calculate a link latency
and compare it to a latency threshold to detect the attacks.
However, the threshold cannot be adjusted according to traffic
patterns, and as a result, normal links might be removed.

The work in [20] gradually increases the latency thresh-
old to exceed the latency of the out-of-band communication
channel. The attack in [20] requires preparation for hours.
Additionally, they offer no specific protection against attack.
The study in [37] also presented a threshold-based algo-
rithm that compares latency samples from LLDP messages
with a threshold. However, the approach may cause dramatic
false-positive predictions, similar to that of [20]. Using the
worm-hole attack proposed in [46], a packet is relayed over the
fabricated link without using any out-of-band communication
channels.

The study in [38] proposed a stealthy probing-based verifi-
cation (SPV) system that sends probe packets to the switches
to discover potentially fabricated inter-switch links. SPV is less
secure due to its integration issues with the SDN controllers.
The tool in [47] can give us more insight into the attack roots.
The work in [48] proposed a secure architecture to counter the
threat of attacks caused by malicious hosts. Nevertheless, this
architecture fails in detecting all types of LFA, similar to [11].

In our recent work [12], we introduced the link latency
attack (LLA) that can bypass the current defence system, such

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:41:51 UTC from IEEE Xplore. Restrictions apply.

3610 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

as TopoGuard+. We also proposed a machine learning-based
link guard (MLLG) algorithm that can protect SDN topology
from LLA and LFA attacks. However, the efficiency of MLLG
reduces in large-scale SDN.

Table V shows a comparison between the existing defence
systems against LFA. The studies in [18], [49] used deep
reinforcement learning (DRL) to enhance topology poisoning
defence in the SDN-based vehicular networks. Their solutions,
however, focus on the failure recovery mechanisms rather than
providing a detection system for TPAs. The study in [39]
proposed a multi-hop link (MHL) fabrication attack employed
in hybrid SDN networks that include both traditional switches
and SDN switches. The hybrid SDN controller uses broadcast
domain discovery protocol (BDDP) to discover the multi-hop
link between two switches. The research also presented a
Hybrid-Shield defence system to protect the Hybrid SDN. The
Hybrid-Shield defence employs a verification method to iden-
tify fake MHLs. However, the solution is not applicable where
LLDP messages are propagated among OpenFlow switches.

VII. CONCLUSION

This paper introduced Link Latency Attack (LLA) and
proposed two machine learning-based defence mechanisms
called MLLG and RLV. The MLLG work when the network
topology rarely updates, while RLV is a real-time and scal-
able defence mechanism to detect LFA and LLA. RLV creates
its dataset to train the model using classification algorithms
and can update the dataset constantly. This system is suit-
able for networks that dynamically add/remove links. We plan
to realise the implementation of RLV in the programmable
networks. Also, we plan to extend the RLV to have a sophis-
ticated mechanism to update its dataset, such as using elastic
time windows methods.

REFERENCES

[1] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: An intel-
lectual history of programmable networks,” ACM SIGCOMM Comput.
Commun. Rev., vol. 44, no. 2, pp. 87–98, 2014.

[2] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[3] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska, “Efficient topol-
ogy discovery in software defined networks,” in Proc. Int. Conf. Signal
Process. Commun. Syst. (ICSPCS), 2014, pp. 1–8.

[4] T. Alharbi, M. Portmann, and F. Pakzad, “The (in)security of topol-
ogy discovery in software defined networks,” in Proc. 40th Conf. Local
Comput. Netw. (LCN), 2015, pp. 502–505.

[5] S. Khan, A. Gani, A. W. A. Wahab, M. Guizani, and M. K. Khan,
“Topology discovery in software defined networks: Threats, taxonomy,
and state-of-the-art,” IEEE Commun. Surveys Tuts., vol. 19, no. 1,
pp. 303–324, 1st Quart., 2017.

[6] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility in
software-defined networks: New attacks and countermeasures,” in Proc.
Netw. Distrib. Syst. Security Symp. (NDSS), 2015, pp. 8–11.

[7] N. Kaur, A. K. Singh, N. Kumar, and S. Srivastava, “Performance impact
of topology poisoning attack in SDN and its countermeasure,” in Proc.
10th Int. Conf. Security Inf. Netw. (SIN), 2017, pp. 179–184.

[8] “Software-defined networking market by component (SDN infrastruc-
ture, software, and services), SDN type (open SDN, SDN via overlay,
and SDN via API), end user, organization size, enterprise vertical, and
region—Global forecast to 2025.” Research and Market. 2021. [Online].
Available: https://bit.ly/3pDWlJK

[9] “Cost of a data breach report 2020.” Ponemon Institute. 2021. [Online].
Available: https://bit.ly/3l0AjR4

[10] R. Skowyra et al., “Effective topology tampering attacks and defenses
in software-defined networks,” in Proc. Int. Conf. Depend. Syst. Netw.
(DSN), 2018, pp. 374–385.

[11] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “SPHINX: Detecting
security attacks in software-defined networks,” in Proc. Netw. Distrib.
Syst. Security Symp. (NDSS), 2015, pp. 8–11.

[12] S. Soltani, M. Shojafar, H. Mostafaei, Z. Pooranian, and R. Tafazolli,
“Link latency attack in software-defined networks,” in Proc. Conf. Netw.
Serv. Manag. (CNSM), 2021, pp. 187–193.

[13] “MININET: An instant virtual network on your laptop (or other PC).”
MININET. Accessed: Jan. 2023. [Online]. Available: http://mininet.org/

[14] “Floodlight.” Open SDN controller. Accessed: Jan. 2023. [Online].
Available: https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller

[15] T. Arnold et al., “Beating BGP is harder than we thought,” in Proc.
Workshop Hot Topics Netw., 2019, pp. 9–16.

[16] Z. Akhtar et al., “Oboe: Auto-tuning video ABR algorithms to network
conditions,” in Proc. Conf. Spec. Interest Group Data Commun., 2018,
pp. 44–58.

[17] “InfluxDB OSS 2.4.” InfluxDB. Accessed: Jan. 2023. [Online].
Available: https://docs.influxdata.com/influxdb/v2.4

[18] J. Wang, Y. Tan, J. Liu, and Y. Zhang, “Topology poisoning attack in
SDN-enabled vehicular edge network,” IEEE Internet Things J., vol. 7,
no. 10, pp. 9563–9574, Oct. 2020.

[19] C. Rigney, S. Willens, A. Rubens, and W. Simpson, “Remote authenti-
cation dial in user service (RADIUS),” IETF, RFC 2865, 2000.

[20] E. Marin, N. Bucciol, and M. Conti, “An in-depth look into SDN
topology discovery mechanisms: Novel attacks and practical counter-
measures,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security
(CCS), 2019, pp. 1101–1114.

[21] W. Xia, P. Zhao, Y. Wen, and H. Xie, “A survey on data cen-
ter networking (DCN): Infrastructure and operations,” IEEE Commun.
Surveys Tuts., vol. 19, no. 1, pp. 640–656, 1st Quart., 2017.

[22] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in multi-service
multi-queue data centers,” in Proc. Netw. Syst. Des. Implement. (NSDI),
2016, pp. 537–549.

[23] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter transport,”
in Proc. ACM SIGCOMM Conf. SIGCOMM, 2013, pp. 435–446.

[24] A. Fernández, S. García, M. J. del Jesus, and F. Herrera, “A study of
the behaviour of linguistic fuzzy rule based classification systems in the
framework of imbalanced data-sets,” Fuzzy Sets Syst., vol. 159, no. 18,
pp. 2378–2398, 2008.

[25] X.-Y. Jing et al., “Multiset feature learning for highly imbalanced data
classification,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1,
pp. 139–156, Jan. 2021.

[26] O. Aouedi, K. Piamrat, and B. Parrein, “Ensemble-based deep learn-
ing model for network traffic classification,” IEEE Trans. Netw. Service
Manag., early access, Jul. 26, 2022, doi: 10.1109/TNSM.2022.3193748.

[27] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Commun.
Surveys Tuts., vol. 18, no. 2, pp. 1153–1176, 2nd Quart., 2016.

[28] S. Weerasinghe, T. Alpcan, S. M. Erfani, and C. Leckie, “Defending
support vector machines against data poisoning attacks,” IEEE Trans.
Inf. Forensics Security, vol. 16, pp. 2566–2578, 2021.

[29] L. Buitinck et al., “API design for machine learning software:
Experiences from the scikit-learn project,” 2013, arXiv:1309.0238.

[30] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[31] “Scapy: Packet crafting for Python2 and Python3.” Accessed: Jan. 2023.
[Online]. Available: https://scapy.net/

[32] J. Carletta, “Assessing agreement on classification tasks: The kappa
statistic,” 1996, arXiv:cmp-lg/9602004.

[33] M. Bekkar, H. K. Djemaa, and T. A. Alitouche, “Evaluation measures
for models assessment over imbalanced data sets,” J. Inf. Eng. Appl.,
vol. 3, no. 10, pp. 27–38, 2013.

[34] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[35] L. A. Jeni, J. F. Cohn, and F. De La Torre, “Facing imbalanced data
recommendations for the use of performance metrics,” in Proc. Humaine
Conf. Assoc. Adv. Affect. Comput. (AAAC), 2013, pp. 245–251.

[36] J. Davis and M. Goadrich, “The relationship between precision-recall
and ROC curves,” in Proc. Int. Conf. Mach. Learn. (ICML), 2006,
pp. 233–240.

[37] D. Smyth, S. McSweeney, D. O’Shea, and V. Cionca, “Detecting link
fabrication attacks in software-defined networks,” in Proc. Int. Conf.
Comput. Commun. Netw. (ICCCN), 2017, pp. 1–8.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:41:51 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNSM.2022.3193748

SOLTANI et al.: REAL-TIME LINK VERIFICATION IN SDNs 3611

[38] A. Alimohammadifar et al., “Stealthy probing-based verification (SPV):
An active approach to defending software defined networks against
topology poisoning attacks,” in Proc. Eur. Symp. Res. Comput. Security
(ESORICS), 2018, pp. 463–484.

[39] P. Shrivastava and K. Kataoka, “Topology poisoning attacks and preven-
tion in hybrid software-defined networks,” IEEE Trans. Netw. Service
Manag., vol. 19, no. 1, pp. 510–523, Mar. 2022.

[40] G. Nencioni, B. E. Helvik, and P. E. Heegaard, “Including failure corre-
lation in availability modeling of a software-defined backbone network,”
IEEE Trans. Netw. Service Manag., vol. 14, no. 4, pp. 1032–1045,
Dec. 2017.

[41] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-
WEKA: Combined selection and hyperparameter optimization of clas-
sification algorithms,” in Proc. 19th ACM SIGKDD Int. Conf. Knowl.
Discov. Data Min., 2013, pp. 847–855.

[42] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter
optimization,” J. Mach. Learn. Res., vol. 18, no. 1, pp. 6765–6816, 2017.

[43] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[44] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep
autoencoders,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discov.
Data Min., 2017, pp. 665–674.

[45] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Proc.
25th Int. Conf. Mach. Learn., 2008, pp. 1096–1103.

[46] J. Hua, Z. Zhou, and S. Zhong, “Flow misleading: Worm-hole attack in
software-defined networking via building in-band covert channel,” IEEE
Trans. Inf. Forensics Security, vol. 16, pp. 1029–1043, 2020.

[47] B. E. Ujcich, S. Jero, R. Skowyra, A. Bates, W. H. Sanders, and
H. Okhravi, “Causal analysis for software-defined networking attacks,”
in Proc. Security Symp., 2021, pp. 3183–3200.

[48] V. Varadharajan and U. Tupakula, “Counteracting attacks from malicious
end hosts in software defined networks,” IEEE Trans. Netw. Service
Manag., vol. 17, no. 1, pp. 160–174, Mar. 2020.

[49] J. Wang and J. Liu, “Location hijacking attack in software-defined
space–air–ground-integrated vehicular network,” IEEE Internet Things
J., vol. 9, no. 8, pp. 5971–5981, Apr. 2022.

Sanaz Soltani received the master’s degree in soft-
ware engineering from the Amirkabir University
of Technology (Tehran Polytechnic), Iran, in 2014.
She is currently pursuing the Ph.D. degree with the
Information and Communication Systems, 5GIC &
6GIC Innovation Centre, University of Surrey, U.K.
Before, she was a Network Specialist with Huawei
and MTN telecommunication companies involved in
4G and LTE projects. Her research interests include
network softwarization, open-RAN, and network
security and privacy.

Mohammad Shojafar (Senior Member, IEEE)
received the Ph.D. degree in ICT from Sapienza
University of Rome, Rome, Italy, in 2016 with
an “Excellent” degree. He is a Senior Lecturer
(Associate Professor) in network security and an
Intel Innovator, a Professional ACM Member, an
ACM Distinguished Speaker, a Fellow of the Higher
Education Academy, and a Marie Curie Alumni,
working in the 5G & 6G Innovation Centre, Institute
for Communication Systems, University of Surrey,
U.K. Before, he was a Senior Researcher and a

Marie Curie Fellow with the SPRITZ Security and Privacy Research Group,
University of Padua, Italy. He secured 310k for the ESKMARALD project
funded by GCHQ, U.K., in 2022. He is also a PI of AUTOTRUST, a
secure autonomous 5G-based traffic management platform the European
Space Agency supported for around AC750k in 2021. He was also a PI
of the PRISENODE project, a AC275k Horizon 2020 Marie Curie project
in network security and Fog task/resource scheduling collaborating at the
University of Padua. He was also a PI on an Italian SDN security and pri-
vacy (AC60k) supported by the University of Padua in 2018 and a Co-PI on
an Ecuadorian–British project on IoT and Industry 4.0 resource allocation
($20k) in 2020. He contributed to some Italian projects in telecommunica-
tions, like GAUChO, SAMMClouds, and SC2. He is an Associate Editor of
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,
IEEE SYSTEMS JOURNAL, and Computer Networks. For additional
information: https://www.surrey.ac.uk/people/mohammad-shojafar

Habib Mostafaei (Member, IEEE) received the
Ph.D. degree in computer science and engineering
from Roma Tre University in 2019. He is cur-
rently an Assistant Professor of Computer Science
with the Eindhoven University of Technology.
Before, he was a Postdoctoral Researcher with
Technische Universität Berlin, where he was
involved in the BIFOLD-BBDC project from 2019
to 2022. He worked as a full-time Faculty Member
with the Computer Engineering Department, Azad
University from 2009 to 2015. He is a member

of ACM. Currently, his main research fields include networked systems,
network management, and distributed systems. For additional information:
https://mostafaei.bitbucket.io

Rahim Tafazolli (Senior Member, IEEE) is the
Regius Professor and a Professor of Mobile and
Satellite Communications. He is the Director of ICS
and the Founder and Director of world’s first 5G
Innovation Centre with the University of Surrey,
U.K. He is regularly invited by many governments
for advise on mobile communications and in partic-
ular 5G technologies. He has given many interviews
to International media in the form of television, radio
interviews, and articles in international press.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 27,2025 at 10:41:51 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

