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RIFO: Pushing the Efficiency of
Programmable Packet Schedulers
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Abstract—Packet scheduling is a fundamental networking
task that recently received renewed attention in the context
of programmable data planes. Programmable packet scheduling
systems such as those based on Push-In First-Out (PIFO) abstrac-
tion enabled flexible scheduling policies, but are too resource-
expensive for large-scale line rate operation. This prompted
research into practical programmable schedulers (e.g., SP-PIFO,
AIFO) approximating PIFO behavior on regular hardware. Yet,
their scalability remains limited due to extensive number of
memory operations. To address this, we design an effective yet
resource-efficient packet scheduler, Range-In First-Out (RIFO),
which uses only three mutable memory cells and one FIFO
queue per PIFO queue. RIFO is based on multi-criteria decision-
making principles and uses small guaranteed admission buffers.
Our large-scale simulations in Netbench demonstrate that despite
using fewer resources, RIFO generally achieves competitive flow
completion times across all studied workloads, and is espe-
cially effective in workloads with a significant share of large
flows, reducing flow completion time up to 4.91x in datamining
workload compared to state-of-the-art solutions. Our prototype
implementation using P4 on Tofino switches requires only 600
lines of code, is scalable, and runs at line rate.

Index Terms—Programmable networks, packet scheduling,
resource efficiency, P4, min-max normalization

I. INTRODUCTION

PACKET scheduling is a fundamental function of network
switches. By optimizing the timing and order of for-

warded packets, a scheduler can greatly improve performance
metrics such as flow completion times (FCT), throughput, and
tail latency, as well as QoS guarantees and fairness [1]–[3].

Programmable packet schedulers [4]–[6] recently received
much attention because of their flexibility and for allowing
network operators to implement their scheduling policies, even
on a per-packet level, without changing the hardware design.
Programmable scheduling consists of two parts: a policy that
assigns priorities (ranks) to packets, and a scheduler that favors
packets with low ranks over the packets with high ranks.
By ranking, reordering, and dropping packets, an effective
scheduling algorithm may realize various performance goals
depending on its policy. For example, assigning ranks ac-
cording to the remaining flow size results in reduced flow
completion times [7].

The performance of the system depends on the scheduler:
the part of the system that processes streams of packets with
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ranks pre-assigned according to the policy of choice. Origi-
nally, programmable schedulers were designed for the Push-
In-First-Out (PIFO) scheduler [5], where incoming packets are
sorted by ranks: the scheduler maintains the queue in sorted
order of packet ranks, and packets are dequeued from the head.
This natural scheduling closely realizes the goals set by the
rank-assigning policy, but packets need to be inserted in a strict
order, which entails high computational costs.

To support non-programmable schedulers, researchers in-
vestigated scalable alternatives to PIFO, which can be per-
formed at line rate. By approximating only some aspects of
PIFO while ignoring the others, some schedulers demonstrated
that one can still closely realize the goals of the rank-assigning
policy at a much lower computational cost. For example,
Strict-Priority PIFO (SP-PIFO) [8] focused on forwarding
the packets in the correct order using multiple strict priority
queues, and Admission-In First-Out (AIFO) [9] focused on
admitting the right packets using a FIFO queue.

This paper complements this line of research, which primar-
ily revolves around performance, by exploring computational
efficiency, and especially considering the amount of memory
and the required number of packet processing stages. In
addition to reducing the resource footprint, this may also
benefit performance gain: by reusing registers and reducing the
number of operations and processing stages, packet processing
latency can be improved [10], [11]. The network operators can
use the saved memory for other functions, such as buffering,
forwarding, and filtering. They can also support a larger num-
ber of slices or tenants without deploying additional switches
or upgrading existing ones. The utility of additional memory
depends on the application, e.g., [12] reports on the effect
of additional available memory on satisfaction levels (the
fraction of a network application’s lifetime that it meets its util-
ity target) in heavy hitter detection, superspreader detection,
maintaining TCP connection and caching, where doubling the
available amount of memory improves satisfaction by 1.1-1.5x
initially, however at a certain point adding memory results in
diminishing returns.

We present Range-In First-Out (RIFO), a programmable
packet scheduling algorithm that processes packets at line
rate using only a single FIFO queue and three registers.
RIFO focuses on admitting the right set of packets without
reordering them. It classifies arriving packet ranks into small
and large categories, similar to flow classification. To achieve
this, we use min-max linear normalization [13], [14] for its
simplicity and efficiency. To normalize, we maintain just two
characteristics of the recent packets: the minimum and the
maximum packet ranks, and periodically reset these values
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to avoid outliers in detecting the correct ranks. To admit a
packet, RIFO uses the score assigned by the normalization,
and if the score is higher than the current queue utilization,
it admits the packet. Furthermore, we use small guaranteed
admission buffers; if our queue utilization is low, we admit
packets irrespective of their scores. We demonstrate that min-
max normalization is an efficient alternative to approximate
quantile [9] in the data plane of programmable switches
for packet admission decisions based on queue occupancy.
Our normalization approach significantly reduces memory
requirements, crucial for deployment in resource-constrained
environments, as demonstrated by our lookup tables’ compact
footprint requiring ≈ 1.22 KB of memory.

RIFO takes a more resource-efficient approach to admission
control compared to state-of-the-art methods that use a single
FIFO queue, such as AIFO [9]. RIFO uses a resetting logic
that periodically refreshes the minimum and maximum packet
ranks, allowing recent traffic patterns to be captured with a
simpler form of quantile estimation. This approach avoids
AIFO’s sliding windows and reduces memory usage by relying
solely on min-max normalization with just three counters. As
a result, RIFO achieves efficient packet admission and priori-
tization with minimal resources, providing a more lightweight
alternative to AIFO for resource-constrained environments
while maintaining comparable performance.

RIFO’s resource efficiency is pushed to an extreme by using
only three mutable registers, and one FIFO queue. Despite that,
our evaluations show that the performance of RIFO is robust,
with high throughput for different workloads, and competitive
with state-of-the-art scheduling solutions in terms of flow
completion times and fairness. For workloads containing many
large flows, such as datamining, our method can improve the
FCT by up to 2.25x, 1.73x, and 4.91x compared to PIFO, SP-
PIFO, and AIFO, respectively, depending on the traffic load
of the links.

A. Contributions
We summarize our main contributions as follows:
• We present RIFO, a programmable packet scheduler that

is simple, resource-efficient, scalable, and implementable
at line rate in existing programmable switches. It is
based on multi-criteria decision-making normalization
techniques, carefully chosen admission criteria, and uses
small guaranteed admission buffers. RIFO maintains only
two statistics about the recently seen packets’ ranks (Min
and Max).

• Our large-scale simulations of RIFO report up to 4.91x
lower FCT for large flows, when the workload con-
tains a significant share of large flows (e.g., datamining
workload), and robust performance across all workloads,
compared with state-of-the-art programmable schedulers.
Similar results hold for realizing fair queuing.

• We find that RIFO is robust across various rank dis-
tributions, by studying both our approach and existing
programmable schedulers under more traffic traces com-
pared to other admission-based packet schedulers. This
sheds light on the performance of scheduling algorithms
in various conditions.

• We present a proof-of-concept implementation on Tofino
switches [11], using just five processing stages. Our
comparisons with other implementations demonstrate im-
provements in hardware resource consumption metrics,
2.54x compared with AIFO and 6.55x with SP-PIFO.

• To contribute to the research community and ensure re-
producibility, we make our source code and experimental
artifacts publicly available alongside this paper 1.

B. Organization

The remainder of this paper is organized as follows. In §II,
we provide the basis of programmable packet schedulers. We
introduce the design of RIFO in §III. In §IV, we analyze the
accuracy of RIFO and §V reports its Tofino implementation
and challenges. §VI reports on the performance of our em-
pirical evaluation under different workloads, as well as on the
resource consumption. After putting our work into perspective
with existing programmable schedulers in §VII, we conclude
in §VIII.

II. BACKGROUND

Programmable packet scheduling [5] promises a flexible
packet scheduling system able to realize a wide range of
policies (e.g. with the goal of minimizing flow completion
time or maximizing fairness) without the need for changing
the hardware design when the policy changes. The system
decouples scheduling into (1) packet rank assignment from
the packet fields and (2) rank-based scheduler that coincides
packets with their ranks, ignoring the packet fields at that
point. The lower the rank, the more time critical is the packet.
The rank sums up all the scheduling-relevant information
about the packet, so two packets with the same rank are treated
as equally important, regardless of the differences in their
fields. This stands in contrast to the non-programmable packet
scheduling, where no concept of a rank exists2.

To effectively realize the goals of a rank-assigning policy
of choice, the rank-based scheduler must prefer the packets
with smaller ranks over the packets with higher ranks. The
pioneer programmable scheduling system PIFO [5] proposes
to sort packets according to their ranks: PIFO uses a priority
queue, inserting incoming packets in positions according to
their ranks (with an exception that packets arriving when the
queue is full are dropped). When the link is idle, the system
schedules the packet with the smallest rank. We note that
packets are not required to be stored in per-flow queues.

The flexibility of the system allowed the implementation of
multiple scheduling policies. The authors of PIFO report that
their scheduler can realize many existing non-programmable
scheduling algorithms, e.g., Weighted Fair Queueing [15],
Token Bucket Filtering [16], Hierarchical Packet Fair Queue-
ing [17], Least-Slack Time-First [18], the Rate-Controlled
Service Disciplines [19], and fine-grained priority scheduling

1https://github.com/mostafaei/RIFO
2Although in non-programmable packet scheduling, the packets have prior-

ities, those are just one of the parameters in addition to the packet fields, rather
than a single characteristic that summarizes the importance of the packet.
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(e.g., Shortest Job First). Some of these policies are straight-
forward to implement, e.g. setting ranks to the job size realizes
Shortest Job First, setting ranks to the pre-assigned slack
plus the arrival time realizes Least-Slack Time-First, whereas
realizing more sophisticated policies requires maintaining ad-
ditional state (see the PIFO paper for examples [5]). All these
policies modify only the rank-assigning function, and a single
rank-based scheduler can realize any policy.

III. THE DESIGN OF RIFO
Our goal is the design of simpler and more resource-

efficient programmable scheduling algorithms which perform
well under a variety of workloads. Resource efficiency leaves
the precious resources of the switch for other purposes, such
as FIFO queues for multi-tenancy, and registers for load
balancing, diagnostics, or routing. In addition to reducing
the resource footprint, resource efficiency may also decrease
packet processing latency by reducing the number of registers,
operations, and packet processing stages [10], [11].

A. Rationale behind RIFO
Rank classification. The design of RIFO is based on the
classification of the packet ranks using normalization. RIFO
classifies packets based on their rank values computed by the
programmable packet schedulers into a relative rank value
that identifies the corresponding size of the flow it belongs to
compared with the others: essentially, a quantile computation
for the incoming rank. Our rank classification does not involve
computing the quantile exactly but rather approximates it using
a linear function.

This rank classification is similar to flow classification,
which classifies the flows into small, medium, and large ones.
RIFO leverages this classification to decide on the admission
of the packets.
Rank admission. After identifying the relative size of the
arrived ranks, RIFO needs an admission mechanism to decide
if it has to drop the packet. RIFO decides the admission of
the packets by checking the queue occupancy of the egress
port. We note that admitting more packets from flows with
low ranks, i.e., the packets that belong to large flows, likely
increases the dropping probability [20]. RIFO relies on a
single decision criterion for the packet admission, and if there
is room in the queue for the packets of large flows, it admits
them. Otherwise, it prefers dropping the packets of large flows
in each range. Since the goal is to minimize the FCT of small
flows, RIFO admits the packets with relatively small ranked
values.

B. The Algorithm

RIFO uses a single FIFO queue and admits an incoming
packet depending on the current queue utilization. RIFO
computes only two statistics about the recently seen packets’
ranks: the minimum and maximum packet rank, which can be
stored using only two registers. Using these two statistics with
a carefully chosen normalization function, we can position the
rank of an incoming packet relative to the recently seen pack-
ets. We identify that admitting high-ranked packets comes with

a penalty for our system (possibly denying buffer space for
low-ranked packets), hence we use a representative of the cost-
criteria normalization functions from multi-criteria decision-
making optimization [13], [14], [21]. As we demonstrate in
our evaluation, this minimalistic information is sufficient for
efficiency and robustness.

Due to carefully chosen admission criteria (designed for
multi-criteria decision-making), this is sufficient for efficiency
and robustness. Our algorithm is built around the following
three concepts:

1) Min and Max in a tracking range. We maintain two
statistics about the packets seen recently: the values
Min and Max. We initialize them to the rank of the
first packet we see and update them adequately as new
packets come. To ensure that the values characterize a
recent range of packets, and further to avoid the effect of
the outliers in classifying the ranks, we periodically reset
them to the rank of the most recent packet; precisely, we
do that every T packets seen, where T is a parameter,
e.g. T = 100. The set of recent packets, called the
tracking range, starts as a single packet rank, and its
length grows to the maximum size of T . Fig. 1 shows
the resetting detail of RIFO.

2) Scoring by normalization. We score packets relatively
to the ranks observed recently. After determining the
relative placement of the incoming packet’s rank, we
normalize it to the recent ranks to obtain a score from
the range [0, 1]. Inspired by Multi-Criteria Decision-
Making [13], [14], [21], for scoring a packet rank of
rank rp, we use a linear min-max normalization method:

N(rp) =
rp −Min

Max−Min
. (1)

In the special case Max = Min, we cannot normalize
according to the chosen method, and then admit the
incoming packet.

3) Admission conditions. We admit the packet if either of
the two conditions is satisfied:

a) Condition 1: comparing score with current
queue length. We score the incoming packet’s rank
by a value in [0, 1] (the exact function defined
above). The lower the score, the higher the chances
for admission. We accept the packet whose score
exceeds a threshold equal to the current utilization
of the queue (0 for an empty queue, and 1 for a
full queue).
Precisely, RIFO checks the buffer size of the queue
to admit the packets. Suppose that B is the size
of the buffer and l is the number of packets in
the buffer. We compute the proportion of buffer
occupancy Q as follows:

Q =
B − l

B
(2)

b) Condition 2: guaranteed admission buffer. We
leave a portion of a queue, called a guaranteed
admission buffer to serve the burst of traffic, and
allow low-latency packet admission [9]. A tunable
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Figure 1. The track range resetting mechanism of RIFO with T=50. We maintain three registers: corresponding to the value of Min, Max, and the counter
of packets seen since the last reset. Initially, we set the counter to 0, and the values Min and Max to the rank of the first packet. We increase the packet
counter by one with each incoming packet, regardless of its admission. When the counter reaches T , we set the counter to 0 and set the values of Min and
Max to the rank of the incoming packet (the resetting action).

Algorithm 1: The pseudocode of RIFO algorithm.
Initialization:

1 Let B be the maximum length of the queue
2 Let k be the fraction of the queue reserved for the

guaranteed admission buffer
3 Let T be the tracking range size
4 Min := ∞
5 Max := 0
6 Counter := 0

Ingress: A packet of rank rp
7 if Counter = T then
8 Min := Max := rp ▷ reset Max and Min
9 Counter := 1

10 else
11 Min := min(rp, Min)
12 Max := max(rp, Max)
13 Counter := Counter+1

14 if Max = Min then
15 Admit the packet
16 else
17 Let ℓ be the current length of the queue if

ℓ ≤ k ·B or rp−Min
Max−Min ≤ B−ℓ

B then
18 Admit the packet
19 else
20 Drop the packet

21 Egress:
22 if queue not empty then
23 Dequeue a packet and send

parameter k assigns a portion of queue size as a
guaranteed admission buffer. If the current queue
utilization is below k, we admit an incoming packet
regardless of its rank.

The pseudocode of RIFO is presented in Algorithm 1, and
the architecture of the system is presented in Fig. 2. The

Track packet
ranks

Classify ranks using
normalization

1

2

3a

3b

Egress queue

Yes Admit packets

Figure 2. The general architecture of RIFO for deciding packet admission.

4 3 6 5 2 1

Max=6

Min=1

RIFO admission 2 1

B=3, l=2T=6

Figure 3. Example of RIFO admission showcasing six arriving packets with
different ranks, where T = 6 and B = 3.

main logic of the algorithm happens in the ingress part of
the packet processing pipeline, where we compute the score
of an incoming packet, compare it with the queue utilization,
and decide if we admit the packet or drop it. At the egress,
we dequeue packets and send them. Additionally, due to
implementation limitations, we compute the queue length at
egress and recirculate the packet with this information; for
implementation details, we refer to §V.

Let us now explain how RIFO admits the incoming packets
into a FIFO queue. Consider an example scenario of Fig. 3
with a tracking range size of six packets (T = 6). In this
tracking range, we have tracked six packets with Min = 1
and Max = 6. We assume there are already two packets in the
queue (l = 2) and now RIFO wants to decide for the packet
with rank five. To this end, RIFO finds the relative rank of
the packet using Min and Max values (N(r5) = 1/5), and it
checks the state of the buffer (Q = 1/3). Now, RIFO admits
the packet if the relative rank condition check passes. Since
N(r5) ≤ Q, it drops the packet. In this example, the relative
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rank of the packet with the rank of 5 — on a range of 1 and
6 — was not small enough to sacrifice the single empty slot
in the queue to admit this packet. Only a packet of rank 4 (or
lower) would have been admitted in this case.

IV. ANALYZING THE ACCURACY OF RIFO

The admission criteria of RIFO estimates the quantile of
the incoming packet in the distribution of the packet ranks in
the traffic, and compares the quantile with the current buffer
occupancy. Two design choices are made to keep the system
simple and resource-efficient:

1) We approximate the quantile of incoming packets in the
traffic’s packet rank distribution and compare it with the
current buffer occupancy.

2) The packet rank distribution is represented by only the
extreme values of recent packet ranks. These estimates
are periodically reset.

These design choices unavoidably lead to some loss of ac-
curacy. However, they enable a straightforward and resource-
efficient implementation that performs reasonably well in
practice. Ideally, we would like to maintain the exact dis-
tribution of the packet ranks, and compute the quantile of
the incoming packet in this distribution. This can however
be computationally expensive, and require a large amount of
memory.

Next, we delve into the impact of these design decisions on
the system’s accuracy compared to the ideal case. We first
examine the quantile estimation accuracy assuming perfect
Min and Max samples, followed by an analysis of the effect
of the resetting period on the accuracy of the Min and Max
samples.

A. Quantile estimation by Min-Max normalization

The approach of using mid-distribution values and piece-
wise linear functions to estimate quantiles of discrete distri-
butions is a well-known technique, with formal guarantees for
estimation quality established in prior research [22]. Although
our method employs a single linear function, increasing the
estimation error, the fundamental principle remains the same.
Throughout this section, we assume a static underlying distri-
bution.

If the underlying packet rank distribution is uniform, the
normalization r−Min

Max−Min gives us an exact quantile estima-
tion, because the CDF of a uniform distribution is F (r) =

r−Min
Max−Min . For a non-uniform distribution, the relationship
between the normalization and the true quantile F (r) is not
straightforward. The expression r−Min

Max−Min assumes a linear
relationship between the rank and the quantiles, which is not
the case for non-uniform distributions.

To analyze the error, let us denote the true quantile by Q(r).
The error E(r) in using the linear normalization as an estimate
for the true quantile Q(r) is E(r) = Q(r) − r−Min

Max−Min . We
can estimate this error by considering the first-order Taylor
expansion near r by E(r) = (r−Min)f(Min)− r−Min

Max−Min ,
where f is the probability density function of the underlying
distribution.

Informally, this error depends on how the underlying distri-
bution deviates from the linear relationship assumed by the
normalization. We can generally examine this deviation in
terms of the mean µ and variance σ2 of the distribution, to
give intuitions how these values can affect the quality of our
estimation.

1) Mean deviation. If the distribution is skewed such that
the mean µ is not at the midpoint Max+Min

2 , the
linear mapping of the normalization will not capture
this skewness. For instance, if µ > Max+Min

2 , the
distribution has more weight on the higher end, meaning
the normalization underestimates the true quantile for
values near Min and overestimates for values near
Max.

2) Variance deviation. Higher variance implies greater
spread of the distribution, and if the distribution is not
uniform, this affects the density differently across the
range. Regions of higher density will have a steeper
CDF, meaning the normalization will underestimate
quantiles in high-density regions and overestimate in
low-density regions.

To upper bound the error, we can use the Kolmogorov-
Smirnov statistic [23] (KS). The KS statistic measures the
discrepancy between the empirical distribution function of a
sample and the cumulative distribution function of a reference
distribution, or between the empirical distribution functions of
two samples. The KS statistic is defined as the supremum of
the absolute difference between the empirical CDF and the
true CDF F (r) over all quantiles in the range [Min,Max]:

D = sup
r∈[Min,Max]

E(r) =
∑

r∈[Min,Max]

|F (r)− r −Max

Max−Min
|.

For a given sample size n, the KS statistic is related to
the sample maximum deviation ϵn between the empirical
and true CDFs by the Dvoretzky-Kiefer-Wolfowitz (DKW)
inequality [24]:

P (D > ϵn) ≤ 2e−2nϵ2n .

The above bound gives us a method to estimate the error
in the quantile estimation given that we can compute the
discrepancy between the empirical and true CDFs for the
sampled ranks.

B. Resetting the Min and Max samples

RIFO keeps track of the minimum and maximum packet
rank by maintaining two registers: Min and Max that are
updated to the currently observed minimum and maximum
packet rank, and reset periodically. We investigate how closely
these registers approximate the ground truth minimum and
maximum across the entire sequence of packets. Min and Max
are the first- and the last-order statistics. Due to their sensi-
tivity to outliers, these sample statistics can be reliably used
only as estimators for light-tailed distributions or stationary
processes [25].

In the extreme value theory, the Fisher-Tippett-Gnedenko
theorem [26] gives a characterization of the distribution of
Min and Max statistics: depending on the source distribution,
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Figure 4. The influence of the resetting period T on the Min and Max
samples. The ground truth Min is 20, and the ground truth Max is 91. The
sampled Min and Max values never deviate too much from the ground truth
Min and Max, but they also do not reach the ground truth extremes of the
underlying distribution.

the extreme statistics can be distributed accordingly to either
Fréchet distribution, Gumbel distribution or Weibull distribu-
tion, hence the asymptotic behavior of these samples is well-
understood. However, the Fisher-Tippett-Gnedenko theorem
characterizes only the asymptotics of the Min and Max theo-
rem — as the resetting period T tends to infinity. Hence, for a
fixed T , we empirically study the distribution of Min and Max
statistics, revealing that for our data, even very small values
of T can track the ground truth of Min and Max statistics.
We generate packets with uniform rank distribution between
0 and 100 in Netbench [27]. Fig. 4 shows the influence of the
resetting period, i.e., T=1000, on the Max and Min samples.

V. DATA PLANE DESIGN AND IMPLEMENTATION

The RIFO admission algorithm is independent of any
specific hardware architecture and can be used on Application-
Specific Integrated Circuits (ASICs), Field Programmable
Gate Array (FPGAs), and network processors. As an example,
in this section, we state the data plane design of RIFO to
implement on a modern programmable switch. This section
aims to show the practicality of RIFO implementation in the
aforementioned devices using P4 [28]. We implemented RIFO
on a Tofino switch [11] using 600 lines of code in P4 language
that can run at line rate. However, there are several challenges
in implementing RIFO using P4 on Tofino, and herein, we
describe how we overcome those challenges in more detail.
We note that Tofino switches were not designed to support
floating point operations fully; however, recent work enables
it [29].

Queue length estimation. RIFO needs to have information
about queue lengths when the packet is being processed at
the ingress pipe to decide about the admission by the traffic
manager. However, this information is only available when
the packet crosses the egress pipe, which is not accessible to
the traffic manager anymore. More specifically, to admit the
packets, we need to have the egress queue size in the traffic
manager — residing between the ingress and egress pipes.

We obtain the egress queue occupancy information us-
ing a customized packet header for RIFO, which is called
RIFO worker. RIFO has egress qlen as the header field to
carry the egress queue length information on the recirculated
packets. Then, RIFO recirculates the worker packet in the
ingress pipe. When the recirculated worker packet reaches the
egress pipe, we add the queue length information to the packet.
Finally, the worker packets reach the ingress pipe of the device
again.

RIFO uses the carried information by the worker packet in
the traffic manager for evaluating Eq. 2. Specifically, we need
to compute B−l

B to decide on admission.
The worker packets of RIFO use the designated port for

this purpose to read the egress queue length information.
Therefore, these packets that are temporally generated by
RIFO do not contribute to the queue occupancy of any specific
egress port. If we assume that it takes 100ns to recirculate
a packet on a port with 10Mpps rate, the mechanism will
only add 1 extra packet to the network, which is negligible.
We can also use one extra register to store the queue length
information in the ingress pipe to reduce the overhead of
recirculation in RIFO. RIFO only needs the recirculation
mechanism when the queue length is not yet available by the
switch architecture. However, the second generation of Intel
Barefoot Tofino switches [11] provides access to the queue
length information in the ingress pipe, thus, removing the need
for recirculation and its possible overhead and performance
degradation.

RIFO admission condition. RIFO admits the packets based
on their relative ranks, i.e., see Eq. 1, and queue occupancy,
i.e., see Eq. 2. Now, we explain how we compute the rel-
ative ranks of the packets in P4-enabled data planes since
division and floating-point operations are not supported. We
use approximation techniques to estimate the values of both
equations [30]. In doing so, we first apply the subtraction
operations in Eq. 1 to get the values of dividends and divisors.

We can use shift operation to approximate the values of both
equations using the power of two numbers to simplify our
data plane implementation. However, we can also transform
the admission inequality into two multiplication operations.
Specifically, we need to multiply the dividend value of Eq. 1
to the capacity of the guaranteed admission buffer, i.e.,
(1− k)×B, and the divisor of Eq. 1 to the available buffer,
i.e., B − l. The values of the guaranteed admission buffer
and the available buffer may not be a power of two numbers.
Therefore, we round these values to a power of two numbers.
To further simplify the implementation of these operations, we
use a lookup table with fixed values to obtain the result of each
multiplication. We transform the admission criteria Eq. 1 and
buffer occupancy Eq. 2 to the following division-free form:

(1−K)×B× (rp −Min) ≤ (B− ℓ)× (Max−Min) (3)

We can pre-compute the value (1−K)×B since the values of
both parameters are known in advance. Thus, RIFO uses the
exponent of the nearest power of two for this pre-computed
value in the multiplication process.

After this transformation, we need three lookup tables to
calculate the exponent values of (rp −Min), (Max−Min),
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V Mask Exponent value

0x0002 0x0003 1
0x0004 0x0007 2
0x0008 0x000F 3

...
...

...
0x4000 0x7FFF 15

Table I
LOOKUP TABLE WITH TO FIND THE VALUES OF (rp −Min),

(Max−Min), AND (B − ℓ) IN APPROXIMATING THE ADMISSION
CRITERIA OF RIFO.

and (B− ℓ). Consider V be one of the values of (rp −Min),
(Max − Min), and (B − ℓ). We define the structure of the
lookup tables for these values when they vary in the range of
a 16-bit integer, as shown in Table I.

At this point, we need to perform two multiplication op-
erations to get the values on the left and right sides of the
inequality. We define two additional lookup tables to perform
these multiplications. The first table uses the exponent value
of (1−K)×B and (rp−Min) as the keys, while the second
table’s keys are (Max − Min) and (B − ℓ). In both cases,
we store the results of the multiplications as table entries.
Finally, we retrieve the approximated values from these tables
for comparison. RIFO admits the packets by comparing the
values on the left and right sides of the transformed inequality.

To illustrate how the lookup table and ternary matching
simplify the calculations, consider an example where we want
to compute the exponent value for (rp − Min), one of the
terms needed for the admission criteria. Suppose (rp−Min) is
0x0008. In our lookup table (Table I), we use a mask value in
ternary matching to find the closest power of two. Specifically,
for 0x0008, we apply the mask 0x000F to match this value
to an exponent of 3, as it falls within the range specified by
0x0008 - 0x000F. Thus, we retrieve an exponent value of
3 from the lookup table.
For the multiplication, suppose (1−K)×B has a precomputed
exponent of 4, while (rp−Min) has an exponent of 3 obtained
through the ternary match lookup. Using the first additional
lookup table, where these exponents are the keys, we retrieve
the result of 24+3 = 27, calculating the multiplication as
a power of two. This exponent-based approach efficiently
computes multiplications without direct operations in the data
plane.
Following this approach, each lookup table uses a mask
for ternary matching to convert values to their respective
exponents, and then exponent combinations are used to ap-
proximate the multiplications required for the inequality com-
parison.

Memory cost. The memory cost associated with the lookup
tables used for approximating the admission criteria of RIFO,
assuming each parameter has a length of 16 bits, is sum-
marized as follows: The lookup tables for approximating
(rp − Min), (Max − Min), and (B − ℓ) each have 15 entries
occupies 36 bits. This results in a total memory usage of
67.5 bytes per table. The lookup table designed for calculating
multiplication results based on exponent values contains 256
entries, each requiring 4 bytes, leading to a total memory

usage of 1024 bytes. Therefore, the overall memory footprint
is 1226.5 bytes. This compact memory requirement ensures
that the proposed method is suitable for high-speed networking
applications where memory efficiency is crucial.

Rank range resetting. RIFO keeps track of the number of
arrival packets to reset the rank range values for Min and
Max ranks registers. We define the rank range reg register
for this purpose, and RIFO increments the value of this
register by one unit by incoming each packet. When the value
of this register reaches the predefined threshold value, i.e., T ,
to reset the Min and Max ranks registers, RIFO assigns the
rank of the current packet as the Min and Max values for
both registers. The next round of tracking incoming packets
starts after resetting the current value of the rank range reg
to zero.

RIFO header definition. RIFO uses the rank of the packets
to decide on their admission and the end hosts generate them
using a customized header. We add RIFO header on the top
of UDP packets and use a predefined UDP destination port
to distinguish RIFO packets at the switch. However, this is
a design choice, and other protocols, such as TCP with the
same destination port or other header layers, can also be used
to distinguish the packets. The RIFO header contains only one
field called rank, and its size can be specified depending on
the range of the ranks generated by the end hosts.

VI. EVALUATION

To confirm the resource efficiency, we implemented RIFO
on Tofino and studied resource consumption. To evaluate the
performance of RIFO, we implemented a packet-level sim-
ulation and conducted extensive experiments under different
workloads compared to state-of-the-art approaches. In this
section, we report our main findings.

A. Hardware Testbed

Low resource consumption and its implications. The pro-
posed scheduler is resource-efficient, leaving the crucial re-
sources of the switch for other purposes. Many network func-
tions are memory- and CPU- hungry; for example, separate
queues are maintained for each tenant to enable multitenancy.
More memory helps more accurate measurements of network
streams; for example, the error of count sketches rapidly
increases when the memory is insufficient. Memory is also
used in stateful I/O and machine learning on edge.

To emphasize resource efficiency, we report the amount of
the resource consumption by RIFO and compare it with state-
of-the-art systems such as AIFO and SP-PIFO on a Tofino
switch implemented using Tofino bf-sde-9.11.0. RIFO and
AIFO use one FIFO switch to schedule the packets, while SP-
PIFO does it with multiple strict priority queues. Additionally,
AIFO and SP-PIFO need to store multiple states to admit
the packets. More specifically, AIFO uses registers to keep
the latest sampled packets, and SP-PIFO leverages them to
maintain queue bounds. Table II shows that RIFO leverages
significantly fewer resources than AIFO and SP-PIFO in all
different resource types. For instance, RIFO needs 2.54x
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Figure 5. Bandwidth split of without and with RIFO for scenarios with four flows when R(Flow 1) < R(Flow 2) < R(Flow 3) < R(Flow 4).

Resource type RIFO AIFO SP-PIFO

Match Crossbars 2.57% 10.74% 8.05%

Gateway 5.36% 3.2% 10.62%

Hash Bits 2.27% 1.92% 4.81%

SRAM 2.86% 7.29% 18.75%

TCAM 1.79% 0% 0.42%

Stateful ALUs 14.29% 47.92% 20%

Logical Table IDs 17.86% 26.56% 18.12%

Table II
THE RESOURCE CONSUMPTION OF RIFO, AND REFERENCE

IMPLEMENTATIONS OF AIFO AND SP-PIFO ON INTEL BAREFOOT
TOFINO. THE VALUES ARE PRESENTED IN PERCENTAGE.

and 6.55x less SRAM compared with AIFO and SP-PIFO,
respectively.
Bandwidth split. We conduct the performance evaluation of
RIFO on our hardware testbed, which comprises a Netberg
Aurora 710 Tofino switch with a capacity of 3.2Tbps [31].
The switch connects two servers via Mellanox ConnectX-5
adapters utilizing 100Gbps links. The sender side operates
on an 8-core Intel(R) Core(TM) i7-6900K CPU @ 3.20GHz,
while the receiver side utilizes an Intel(R) Xeon(R) w7-3465X
CPU. Both sender and receiver modules are developed using
DPDK version 22.11.1 [32]. The servers run Ubuntu 22.04.3
LTS operating system, with the Linux kernel version 6.2.0-39-
generic.

To demonstrate the prioritization capabilities of RIFO, we
throttle the link capacity from the switch to the receiver to
15 Gbps, creating a congested scenario. This configuration
enables us to examine how the system prioritizes high-priority
packets under network constraints. While the hardware sup-
ports 100Gbps, the throttling allows us to simulate contention
and evaluate RIFO ’s handling of competing flows at various
priorities, which would not be as evident under uncongested
100Gbps conditions.

We conduct bandwidth split tests without and with RIFO
with four UDP flows, each at 15Gbps, over a bottleneck link.
These flows have different priorities, as illustrated in previous
works [8], [9], [33]. We initiate one flow every five seconds

from the sender, where the packets of Flow 4 hold the lowest
rank (highest priority), while those of Flow 1 hold the highest
rank. With four concurrent flows, i.e., Flow 1 to Flow 4, each
with 15Gbps, we generate 60Gbps traffic from the source to
the destination, thus creating a congested link.

Figure 5 illustrates how the switch allocates bandwidth to
these flows without and with RIFO. Without RIFO tries to
evenly distribute bandwidth upon the arrival of each new
flow every five seconds, ensuring equitable sharing among
active flows, as depicted in Figure 5(a). In contrast, RIFO
dynamically allocates available bandwidth based on the rank
of the flows, with the highest-ranking flow monopolizing the
link’s capacity in Figure 5(b). For instance, during the second
five-second interval, RIFO assigns the bottleneck link capacity
to the packets of Flow 2, which hold the highest rank, while
the packets of Flow 1 experience drops.

B. Packet-level Simulation

We perform packet-level simulation similar to the state-of-
the-art packet scheduling algorithms [5], [8], [9] on a leaf-
spine datacenter topology with nine leaf switches, four spine
switches, and 144 servers. The bandwidth of access links
is 100 Gbps, while the leaf-spine links are 400 Gbps. We
implement RIFO in Netbench [27].

We evaluate the performance of programmable packet
schedulers for two objectives: minimizing FCT and fairness.
We compare the performance of pFabric when run on top of
RIFO, PIFO [5], SP-PIFO [8], and AIFO [9]. We also report
the FCT flows for TCP NewReno with drop-tail and DCTCP
with ECN-marked drop-tail queues. We run the experiments
on commonly used by the networking community in the
datacenter scenarios, i.e., websearch [2] and datamining [34].
We also conduct experiments to check the effect of tracking
range and queue sizes on the performance of RIFO. We set
the initial values of the target queue length to 20 (B = 20),
the track range size to 500 (T = 500), and use 10% of the
buffer as the guaranteed admission buffer similar to AIFO [9].

1) FCT Minimization with RIFO: In this section, we
report how RIFO performs in minimizing FCT under realistic
workloads, i.e., websearch and datamining. We implement
Shortest Remaining Processing Time (SRPT) for pFabric [2]
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Figure 6. Simulation results on websearch workload for minimizing FCT.
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Figure 7. Simulation results on datamining workload for minimizing FCT.

to compute the rank of incoming packets and assess the
performance of RIFO. We generate the traffic load according
to the Poisson distribution of the workloads and report the
results when the load varies in the range of 0.2 to 0.8. We
classify the generated flows into small (< 100KB) and large
(≥ 1MB) ones in our evaluation. Our evaluations also include
traffic generated according to Pareto distribution shedding new
light on the performance of AIFO.

We compare the performance of RIFO in terms of FCT
minimization with those of SP-PIFO, PIFO, and AIFO, which
are the state-of-the-art packet scheduling algorithms in the data
plane as well as TCP and DCTCP. Furthermore, pFabric is the
transport layer at the end-hosts for the programmable packet
schedulers.

Fig. 6 presents the FCT of different flows for websearch
workload. More specifically, Fig. 6(a) shows all the pro-
grammable packet schedulers, i.e., RIFO, AIFO, SP-PIFO,
and PIFO, achieve a similar average FCT for small flows
regardless of the load. However, the average FCT of small
flows for PIFO slightly increases when the network has a
higher load. Fig 6(b) shows that all programmable packet
schedulers achieve similar 99th percentile FCT for the small
flows. Fig. 6(c) presents the average FCT of large flows for
the same workload. RIFO reduces the FCT of large flows
compared with AIFO when the load is higher than 0.4, and
this FCT improvement happens compared with SP-PIFO when
the load is higher than 0.6. We note that RIFO and AIFO use
just one single FIFO queue. We also observe that the average
FCT of large flows increases when we inject more traffic into
the network. One reason for such an FCT increment is that

the packet schedulers prefer transmitting the packets of small
flows, and packet drops from large flows are inevitable.

We now repeat the same experiments for the datamining
workload, and Fig. 7 reports the FCT of different flow sizes.
Fig. 7(a) shows that the small flows achieve a similar average
FCT when running with programmable packet schedulers.
However, the 99-percentile FCT of small flows in RIFO is
slightly higher than others when the network load is higher
than 0.5 in Fig. 7(b). TCP has the highest FCT for small flows
among all algorithms. For large flows, RIFO can achieve lower
FCT up to 2.25x, 1.73x, and 4.91x compared with PIFO, SP-
PIFO, and AIFO (see Fig. 7(c)). The main reason behind such
improvement relies on the admission mechanism of RIFO
with fixed tracking range size, which is beneficial for scenarios
with larger flows. Due to the large number of small flows
under high loads, the average FCT of large flows benefits this
proportionally.

2) Impact of the tracking range size: We now study the
impact of tracking range size on the FCT of different flows for
the websearch workload. This parameter controls the values
for the Min and Max parameters, which play the main role
in dropping packets. For the first set of experiments in Fig. 6
and Fig. 7, we set the tracking range size to 500 packets.
Fig. 8 shows the results of experiments when the track range
is 100, 500, and 1000 packets. We observe that for scenarios
when the link load is less than 50%, increasing the track
range has minimal impact on the FCT of flows regardless of
their sizes. We note that a smaller track range improves the
FCT of small flows, while large values are good for large
flows. We summarize the main reason for such an impact
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Figure 8. The effect of tracking range size on the FCT of different flow sizes of RIFO.

as follows. When the track range is small, we have fewer
packet ranks to find the relative rank of each packet. This
condition is advantageous for small flows since the probability
of having large fluctuations among the packets of different
flows decreases. In the case of a large track range, we may
admit packet ranks that belong to a very large flow, and
the probability of having another set of such flows is less
according to the traffic flow size distribution of websearch.
Therefore, RIFO is more efficient in admitting the packets of
large flows.

3) Impact of Queue Size: We measure the impact of queue
length on the FCT of small and large flows obtained by RIFO
when running the simulations using the websearch workload.
We report how different queue lengths affect the FCT and the
throughput of flows. We first set the B to a small value like
10 packets, and then increase it to 500.
Fig. 9(a) shows that RIFO achieves a similar FCT for small
flows regardless of the queue length when the load is less than
60%. However, for scenarios with a load higher than 60%,
adding more space to the queue results in the FCT increment
for small flows since RIFO admits more small flows with
similar relative ranks. Accumulating more small flows in the
single FIFO queue leveraged by the RIFO results in longer
FCTs. However, we observe the opposite behavior for the same
experiments but for large flows in Fig 9(b). Having a larger
queue length is desired when the network load is high since
it results in FCT reduction for them.
Fig. 9(c) shows that flows achieve higher throughput when the
network has a lower load and higher queue length. The main
reason for such results is that in such scenarios, RIFO can
admit more packets from different flows, and the likelihood
of dropping packets is lower.

4) Impact of T and B: In this section, we study the impact
of a large tracking range T for scenarios with a larger queue
size B. Since we already reported the impact of T and B when
one of them is constant, we now equate the values of both
parameters and report the impact on the FCT and throughput.
The choice of equal parameters T = B is especially attractive,
as it relieves network operators from the necessity of setting
the parameter T .

Table III and Table IV show that the FCT of flows in RIFO
and AIFO improves when we use equal value for T and B for
both small and large flows. RIFO achieves approximately 3x
shorter FCT for small flows, specifically when the network has

RIFO AIFO

Load B=50 B=100 B=500 B=50 B=100 B=500

0.2 0.005 0.005 0.007 0.013 0.010 0.009
0.3 0.005 0.006 0.009 0.015 0.012 0.012
0.4 0.006 0.007 0.011 0.017 0.014 0.016
0.5 0.008 0.008 0.014 0.018 0.015 0.020
0.6 0.010 0.011 0.018 0.018 0.015 0.024
0.7 0.013 0.015 0.030 0.018 0.014 0.030
0.8 0.016 0.018 0.041 0.018 0.013 0.034

Table III
FCT OF SMALL FLOWS FOR RIFO AND AIFO WHEN T=B.

RIFO AIFO

Load B=50 B=100 B=500 B=50 B=100 B=500

0.2 0.45 0.44 0.41 0.48 0.47 0.43
0.3 0.58 0.55 0.51 0.68 0.63 0.54
0.4 0.82 0.75 0.67 1.14 1.00 0.71
0.5 1.48 1.20 0.94 2.65 2.05 1.05
0.6 5.57 3.34 1.59 8.08 6.27 2.03
0.7 9.29 9.85 7.34 15.18 14.29 10.02
0.8 15.00 10.74 8.52 20.52 18.77 14.38

Table IV
FCT OF LARGE FLOWS FOR RIFO AND AIFO WHEN T=B.

a lower load, while both approaches achieve a similar FCT for
small flows when the B is 500. RIFO gains high throughput
when the T and B are higher, and the network load is low.
However, increasing the load has the opposite impact on the
average FCT of all flows regardless of the values of T and
B. We also note that increasing the size of the guaranteed
admission buffer (the parameter k) harms the FCT of the small
flows.

5) Throughput: In this section, we report the average
throughput of large flows for websearch (see Fig. 10(a)) and
data-mining workloads (see Fig. 10(b)). We calculate the
throughput of the large flows as the ratio between the amount
of all the received bytes and the sum of the FCTs. We observe
the highest throughput when the load is 0.2, and increasing the
load results in dropping throughput regardless of any packet
scheduling algorithms in both workloads. We also observe
that depending on the load, the average throughput of the
schedulers changes significantly. For example, the websearch
workload contains more small flows than those of datamining,
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Figure 9. The effect of queue size on the FCT and throughput of flows running RIFO.
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Figure 10. The average throughput of large flows for various packet
schedulers.

and consequently, the throughput of large flows is lower.
Across the board, RIFO gains higher throughput than AIFO
in most link loads even though both use a FIFO queue for
admission. SP-PIFO has better throughput than RIFO and
AIFO since it leverages multiple strict priority queues.

6) Fair Queueing: In this section, we study the impact
of fair queueing on the performance of packet scheduling
algorithms. We implement fair queueing for flows using Start-
Time Fair Queueing (STFQ) [35] to assign ranks on top of
AIFO, SP-PIFO, and PIFO. We also include the state-of-the-art
fair queueing mechanisms such as TCP, DCTCP, and AFQ [36]
to compare the fairness. Fig. 11 reports the FCT of different
flows on websearch workload. Specifically, Fig. 11(a) shows
the average FCT of small flows while the 99th percentile
latency of small flows was shown in Fig. 11(b). We also report
the FCT of large flow sizes in Fig. 11(c). We note that in
most scenarios, RIFO achieves similar performance to those
of AIFO, SP-PIFO, and PIFO by using a single tracking range
and a FIFO queue.

We now report the impact of fair queueing on the FCT of
flows for datamining workload in Fig. 12. We can observe
similar trends in the performance of all algorithms to those of
websearch, including for the datamining workload. However,
we have shorter FCTs for small flows, while large flows have
longer FCTs.

7) Experiments Using Pareto Distribution.: In this section,
we measure the impact of using Pareto distribution for incom-
ing traffic. We generate the traffic load according to the Pareto
distribution of the workloads and report example results when
the load varies from 0.2 to 0.8. We set the Pareto distribution
shape parameter value to 1.05 and use the Netbench [27]
implementation to find the corresponding value for the scale

parameter. Fig. 13 shows the FCT of different algorithms
on websearch workload. Across the board, DCTCP has the
performance in all experiments, while RIFO and SP-PIFO
have very similar FCTs for various flow sizes.

Previous evaluations of AIFO reported superior performance
compared to SP-PIFO, whereas our new experiments for
Pareto distribution demonstrate that SP-PIFO performs better
than AIFO. Among the programmable packet schedulers,
RIFO and SP-PIFO achieve the lowest FCTs for small flows
while their performance is similar for large flows.

VII. RELATED WORK

Programmable packet scheduling has recently received
much attention [5], [6] and is an example of a more gen-
eral trend pushing innovation in communication networks
using programmable data planes [37]. Programmable packet
scheduling approaches can closely approximate traditional,
fixed-function schedulers such as Shortest Remaining Pro-
cessing Time [7] for flow completion time and Start-Time
Fair Queuing [35] for fairness, and can express others such
as Least-Slack-Time-First [18] and Service-Curve Earliest
Deadline First [38]. In addition to realizing optimization
objectives, it is also possible to account for other requirements
such as privacy [39]. Despite its flexibility, it was argued
that programmable scheduling cannot jointly optimize all the
desired objectives [4] (an observation following a similar result
for traditional schedulers [40]).

Push-In-First-Out (PIFO) [5] is often considered an ideal
programmable scheduling algorithm. However, it is complex
and hence, over the last years, several algorithms for pro-
grammable packet scheduling were proposed that approximate
only some aspects of PIFO, but are compatible with available
programmable switches at line rate at scale. AIFO [9], an
admission-only approximation of PIFO with a single FIFO
queue was thoroughly discussed across the paper. We note that
AIFO can be implemented with less memory by decreasing
the tracking window size, but no reference implementation
exists. SP-PIFO [8] maintains a sequence of FIFO queues,
assigns the packet to one of them depending on its rank, and
dequeues the packets from the head. Each queue maintains its
threshold for admission: a packet is assigned to the first queue
with a threshold lower than the packet rank. The thresholds
dynamically adjust to the ranks: (1) to minimize inversions
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Figure 11. The impact of fair queuing on the FCT of websearch workload.
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Figure 12. The impact of fair queuing on the FCT of datamining workload.
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Figure 13. The impact of Pareto distribution on the FCT of websearch workload.

within one queue, upon admission, the threshold is at least
the rank of the admitted packet, and (2) if the inversion in the
last queue is detected, all thresholds decrease.

To drive the development of programmable switch hard-
ware, several other systems for programmable scheduling were
proposed [41]–[45] that rely on new hardware designs.

There is also interesting work on possible extensions of
the rank-based programmable scheduling approach. In par-
ticular, calendar queues [33], [46] generalize the rank-based
scheduling approach, and enable more sophisticated packet
prioritization policies, where scheduling decisions depend not
only on the packet rank but also on the elapsed time. Gear-
box [47] employs multiple FIFO queues to approximate WFQ
to allocate bandwidth.

VIII. CONCLUSION AND FUTURE DIRECTIONS

We studied the efficiency of packet scheduling in the
programmable data plane and proposed RIFO, a simple yet
effective algorithm that uses only three mutable registers and
one FIFO queue, and is implementable on existing hardware
at line rate.

We see our work as a first step and believe that it opens
several interesting directions for future research. In particular,
it will be interesting to explore alternative normalization meth-
ods, some of which may become available only as the capaci-
ties of programmable switches grow (such as enabling floating-
point operations [29]). Indeed, various normalization methods
exist in multi-criteria decision-making, and we demonstrated
the power of one of the simplest and most basic methods. It
would also be interesting to conduct a more in-depth study
of the effect of different switch resources on performance and
energy consumption.
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