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ABSTRACT

Many applications, such as video streaming, congestion control,
and server selection, can benefit when the data rate of different
priority groups between two endpoints is accurately estimated over
the end-to-end path. With the introduction of programmable net-
works, e.g., P4, it is now possible to offload the measurements to
the data plane of intermediate devices. Recently, tools have been
developed to react to changes in available bandwidth, but a tool to
accurately estimate end-to-end per-priority data rates needs to be
added. This motivates us to design and implement a new end-to-end
and per-priority data rate estimation tool, PrioMeter. PrioMeter can
accurately report the data rate per priority group of flows in pro-
grammable networks using high-precision timestamps for arbitrary
traffic scales. PrioMeter leverages two primitives: quantization and
truncation, to achieve its goals. We implement PrioMeter in P4 and
test it on BMv2 switches, and our preliminary results using NS3
simulations show that it can accurately estimate the data rate of
different priority flows with minimal overhead.
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1 INTRODUCTION

With the rapid growth of modern communication networks and
services running on them, e.g., video streaming, network operators
need tomeasure the traffic of different services tomeet strict Quality
of Service (QoS) requirements or fairly share the bandwidth among
users [14]. The available bandwidth measurement is a common
technique to estimate the residual capacity of the network to offer
new services. For instance, content providers leverage the end-to-
end available bandwidth estimation information to better balance
the network load [20]. Moreover, knowledge about the data rate
of individual flows, or per set of flows that belong to the same
priority groups (PG) can enhance the performance of a network by
classifying the packets and by prioritizing user traffic to achieve
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good user experience and engagement and increase application
revenues [11]. Performance of applications running in datacenters
can also be enhanced when accurate end-to-end information about
the data rate per priority flow group is accurately estimated [15].

Many techniques and tools exist to measure the end-to-end avail-
able bandwidth such as pathLoad [11], pathChirp [18], IGI [9],
iPerf [10], to name a few. The common approach among these
techniques and tools is to leverage either probe packets (packet
trains) or bulk transfer statistics tomeasure the available end-to-end
bandwidth. Unfortunately, none of them can be used to accurately
estimate the end-to-end data rate per group of flows.

In this paper, we argue that with the advancements in pro-
grammable networks and the use of P4 [8], it is now possible to
have access to information about the status of intermediate net-
work devices by utilizing widely available P4-enabled telemetry
tools in commodity P4 switches. We design, develop, and evaluate
a new per priority data rate estimation tool PrioMeter in pro-
grammable networks. PrioMeter uses high-resolution timestamps
provided by the P4 programmable switches to measure the amount
of transferred data in the data plane per priority groups of flows.
PrioMeter supports finer-grained measurements, which enables
network operators to allocate resources more efficiently.

Although readily available congestion control tools, e.g., HPCC [13]
or PINT [6], provide information about the queue size and utiliza-
tion of individual links, they do not report on the end-to-end data
rate per group of flows with the same priority. With PrioMeter,
we provide the first end-to-end data rate estimation per priority
group of flows. We believe that PrioMeter can unleash the full
potential of programmable networks and satisfy hard application
requirements that run on top of programmable networks.

PrioMeter adds a fixed header field to the packet’s header fields
to carry the flow priority group rate on each path. However, carry-
ing the data rate of different priorities over the network, especially
in the datacenter networks, adds overhead to the network and neg-
atively affects the flow completion time (FCT). To minimize the
overhead, PrioMeter leverages two primitives: quantization and
truncation. The first primitive compacts the measured data rate per
priority on the data plane of programmable devices. The network
operators can control the granularity of the measurements by decid-
ing on the number of bins (quantization) to keep the data rate. The
second primitive truncates the quantized values to a representative
data rate per priority. With these two primitives, our evaluation on
a large-scale datacenter network shows PrioMeter has comparable
FCT slowdown with the state-of-the-art tools such as HPCC [13].
Our contributions can be summarized as follows:

• We design, implement, and evaluate PrioMeter, a system that
utilizes high-resolution timestamps of P4-enabled switches to
accurately estimate data rate of per flow priority group.

• We report that PrioMeter’s overhead is comparable with other
data plane-based tools with additional feature of reporting per
priority data rates.

https://doi.org/10.1145/3630047.3630199
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3630047.3630199


EuroP4 ’23, December 8, 2023, Paris, France Habib Mostafaei and Georgios Smaragdakis

• We make the implementation of PrioMeter publicly available
in [3].
The rest of this paper is organized as follows. Section 2 sur-

veys the existing works. We present the design of PrioMeter in
Section 3. Section 4 reports on the performance of our empirical
evaluation under different workloads and we conclude in Section 5.

2 RELATEDWORK

This section presents the state-of-the-art available bandwidth esti-
mation techniques and tools.

2.1 Bulk Transferred-based Measurements

Some of the existing available bandwidth estimating tools, e.g.,
iPerf [10], TTCP [19], and NetPerf [16] measure the end-to-end
available bandwidth on a path by transferring large packets. Notice
that the use of the above tools adds significant traffic overhead on
the network [17] and they fail in measuring the data rate of each
PG of flows.

2.2 Probe Packet-based Measurements

Most of the available bandwidth estimating tools, e.g., Pathload [11],
PathChirp [18], IGI/PTR [9], and CAPSET [12] send per path and
periodically a small number of probes to reduce the measurement
load. All the above tools do not have access to the state of individual
network components and have no support to measure per PG data
rate.

2.3 Data Plane-based Solutions

HPCC [13], PINT [6], and Bolt [5] utilize in-network telemetry to
get the link utilization information to control congestion without
being able to meter the data rate of each PG. However, HPCC,
PINT, and Bolt are not designed to report information about the
end-to-end data rate per PG on a network path.

3 THE PRIOMETER SYSTEM

This section presents the architecture of our system, PrioMeter,
describes how it leverages high-precision timestamps to measure
the data rate of PGs, and defines per-priority data rate aggregation.
First, we present the aggregation technique used in our approach to
collect the data rate for each PG. Then, we sketch how PrioMeter
measures the data rate of different PGs.

3.1 PrioMeter Aggregation

Per-priority aggregation summarizes the data rate value of each
PG among links from the source to the destination in a path. We
formally define it as follows.

Consider a network with a set of devices e.g., switches or routers,
and links. Also, consider a path 𝑝 between a sender and a receiver
in this network. We assume 𝐻 = {ℎ1, ℎ2, . . . , ℎ𝑛} is a set of hops
for path 𝑝 that does not change during the measurement time
window 𝑗 . Each hop ℎ1 has a set of flows with different PGs, 𝜌 =

{𝑝𝑔1, 𝑝𝑔2, . . . , 𝑝𝑔𝑘 }.
For each hop like ℎ1, we denote the set {𝑟𝑝𝑔1ℎ1

, 𝑟
𝑝𝑔2
ℎ1

, . . . , 𝑟
𝑝𝑔𝑘
ℎ1

} as
the current data rates for each 𝑃𝐺 in the measurement time window
𝑗 . For a specific pg, e.g., 𝑝𝑔 𝑗 , on path 𝑝 , the data rate is given by:
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Figure 1: Snapshots of three sliding windows of PrioMeter.
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Figure 2: An example of data rate computation of PrioMeter

for two different time window. PrioMeter receives three

packets in each time window and updates the values of the

registers accordingly.

𝑅pg𝑗 = max
ℎ𝑖 ∈𝐻

𝑟
pg𝑗
ℎ𝑖

(1)

where 𝑛 is the total number of hops, and 𝑘 is the total number of
PGs. Herein, the number of hops for each path can vary depending
on the network topology.

3.2 Priority-based Aggregation

PrioMeter performs measurements in time windows. We define a
threshold value for the length of thewindow to compute the amount
of transferred data on each port. Figure 1 shows an example of mea-
surement with three windows with a different number of incoming
packets in each, but with the same PG to simplify the illustration.
Each colored box in Figure 1 indicates a packet, and the switch
can receive multiple packets of the same type in a measurement
window. We now detail the measurement mechanism.

We introduce two different registers to measure the transmitted
traffic over a port, namely, bytes_reg and rate_reg.We also define
timer_reg register to measure the time window length. We set a
fixed value as the threshold to reset the values of the three registers.
We use bytes_reg register to count the amount of transmitted
bytes per PG per port. rate_reg register maintains the latest data
rate from each port per PG. P4 registers are stateful memories that
can maintain user-defined data on the P4 switches.

When a packet arrives at a device, it checks the size of the packet
and updates the value of the bytes_reg register. PrioMeter does
this measurement for all the packets crossing each egress port. This
measurement implies that the number of cells in the bytes_reg
register is equal to the number of the egress ports of the switch times
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PGs={1,2,3}
index rate
21 0011 0000 1010 0011
22 0000 0100 1100 1100
23 1000 0000 0101 1010
... ....

Flow_table
src_ip dst_ip src_port ... ePort

10.0.0.1 10.0.0.2 1234 ... 2
10.0.2.1 10.0.3.1 4321 ... 3

0011 0000 0000 0100 1000 0000

rate_reg

0000 0000 0011 0000
0000 0000 0000 0100
0000 0000 1000 0000

rate >> QL:8

Truncate

input_packet

User

Concatenate

outgoing_packet
Update

Quantized rates

rate PG1 rate PG2 rate PG3

0000 0010 0000 0001 0000 1110

rate PG1 rate PG2 rate PG3

Rate from previous hop

0011 0000 0000 0100 1000 0000 Append

Figure 3: The internal of PrioMeter for per-PG data rate measurement: flow table, rate register, quantization, and truncation

the number of PGs in the network. Since the P4-enabled device
accumulates the size of the packets in the bytes_reg register, we
need to reset its value periodically over a specific measurement
time window. This reset implies that PrioMeter should keep track
of the timestamp of the incoming packets to sum the packet lengths.

We use the timer_reg register to account for timing since our
measurements rely on high-resolution timestamps provided by
programmable devices such as Tofino [1]. PrioMeter initialize this
register with the timestamp of the first packet and resets its value
to the latest timestamp when it reaches the threshold value.
Running example. In Figure 2, we provide a running example to
show how PrioMeter performs per PG data rate measurement in
the data plane. We assume that all the packets belong to the same
PG for simplicity. At the beginning of measurement, we assume
that the value of the timer_reg is zero and receive three packets,
namely, A, C, and F during this timewindow, i.e.,𝑤𝑖𝑛𝑑𝑜𝑤#1.We also
assume that four packets are received in the second time window,
i.e.,𝑤𝑖𝑛𝑑𝑜𝑤#2.

Next, we explain how PrioMeter updates the values of the dif-
ferent registers. PrioMeter initializes the values of bytes_reg
and rate_reg registers to zero and timer_reg to the timestamp
of packet A. PrioMeter updates the values of bytes_reg and
rate_reg registers when the timer threshold value is reached. It
checks the size of packet A, i.e., 10 Bytes, and writes this value
into the bytes_reg register. Since the threshold for the update is
not reached, the values of bytes_reg and rate_reg registers re-
main unchanged. The same procedure happens for the new two
consequent packets. After receiving packets C and F, the value of
bytes_reg register changes to 30 and 60 Bytes, respectively. By ar-
riving packet B, the time threshold to reset the values of bytes_reg
and timer_reg and update the value of rate_reg registers are met.
PrioMeter writes 60 as the measured rate into the rate_reg reg-
ister. The same procedure happens for the next four consequent
packets in time window#2.

Per-priority measurement of the PrioMeter adds the measured
data rate information of each priority to the header of each packet.
We use a fixed-width packet header to carry the rate information.
PrioMeter checks the value of the header field and updates its

value according to the per-priority aggregation function. In our
architecture, the receiver extracts the measured data rate value.

To store the data rate of each PG, we need to design a feasible
and efficient data plane data structure. The data structure should
be able to keep the data rate of different priorities and ports of each
switch. The straightforward approach is to use a two-dimensional
array with a possible number of ports and priorities. However, this
approach is not implementable in real hardware switches due to
the limitations on the number of register accesses. We introduce an
alternative design choice that we call priority meter data structure.
Our approach concatenates the egress port number and the PG of
the packet to find the index of the register to update the data rate.
Considering a commodity network device with 64 ports and eight
PGs in the network, PrioMeter requires 512 memory cells to keep
track of the data rate of all PGs per port.

To aggregate the data rate of each PG, we need to collect a
set of data rate values for PGs and append its measured value
to the current packet. Assuming a 32-bit field value for keeping
the data rate, we need to add |𝑃𝐺𝑠 | × 32 bits overhead to each
packet to do the measurement. This adds a significant amount of
overhead to the packets resulting in reducing the performance of
the network particularly in datacenters. Furthermore, it requires
more bandwidth to carry the data. To overcome this challenge, we
leverage quantization to encode the measured data rate and reduce
the overhead of our estimation. After quantizing the data rate of
each PG, we truncate each data rate and use a predefined offset to
append them into the packet. PrioMeter performs the following
three steps: (i) collect per-PG data rate, (ii) update, and (iii) decode.
We now explain them in detail.

3.3 Collecting per-PG Data Rate

To collect the data rate estimation of all PGs when they are copied to
rate register, PrioMeter employs two basic primitives: quantization
and truncation. The first one aims at measuring the precise data
rate information of each PG to coarse-grained bins representing
a range of continuous data rates. The second primitive trims the
number of bits that are needed to carry the data rate information
of each PG. These two primitives reduce the overhead of carrying
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the data rate information on the network. Figure 3 shows these
operations. We now explain the details of each step.

3.3.1 Lookup. PrioMeter first matches the incoming packet with
the flow table to lookup the associated egress port. The routing rules
are proactively populated by the operator on the flow tables via the
control plane. In Figure 3, for example, the rule ⟨10.0.0.1, 10.0.0.2, 1234⟩
specifies that the incoming packet should be forwarded via egress
port 2. The egress port number of the incoming packets and the
set of PG values are necessary to find the index of the flows in the
rate_reg. The values of PGs in our example in Figure 3 are 1 ,
2 , and 3 . We extract the current value of the PG from the packet
header.

PrioMeter concatenates the egress port number and value of
each PG to create an index for each cell within various registers,
such as rate_reg. Figure 3 shows that the index values for egress
port 2 when the operator aims to measure the three PGs are 21 ,
22 , and 23 .

3.3.2 Quantization. The lookup step determines the egress port of
the packet and what is the affected index in the rate_reg for data
rate measurements. Herein, the first step is determining the correct
bins for quantization to get the data rate. The bins for a specific
PG indexed by bins(index,rate)=rate(index)≫QL, where index is the
same index obtained from the lookup step, QL is the quantization
level, and 0 ≤ 𝑄𝐿 ≥ log2 (𝑐). Here, 𝑐 is the maximum capacity of
the link in bits. PrioMeter uses power-of-two bins to simplify the
estimation to find the correct bin using the right shift in the data
plane.

Figure 3 shows the data rate for each index in binary format. For
example, the data rate value for index 21 is ⟨0011 0000 1010 0011⟩,
with 𝑄𝐿 = 8 yields the quantization value for 48, i.e., ⟨0011 0000⟩,
bps. In this example, we use 16 bits for the data rate measurement
to simplify the presentation of our approach.

3.3.3 Truncation. After obtaining the quantized value in the sec-
ond step, truncation trims the obtained value using bit slicing sup-
ported by the P4. It concatenates each value based on the offset spec-
ified by the number of PGs. Truncation is pivotal in mitigating the
overhead introduced by PrioMeter when metering the data rate
for each priority. For instance, in our example in Figure 3 withQL=8,
PrioMeter receives the quantized value, i.e., ⟨0011 0000 1010 0011⟩,
and takes the eight lower bits, i.e., ⟨0011 0000⟩, and appends them
to the current packet header.

3.3.4 Concatenation. Finally, PrioMeter concatenates the trun-
cated data rates and compares them with the received data rate
from the previous hop, if any. We apply the per-priority aggregation
to find the maximum measured data rate. To extract the current
data rate values on the packet header, PrioMeter uses the same
offset value after applying the bit slicing. Finally, it appends it to
the packet header before sending it via the egress port. PrioMeter
repeats these steps for every packet.

In our example in Figure 3, the current truncated value is ⟨0011 0000⟩,
while the carried data rate is ⟨0000 0010⟩. Since the current trun-
cated value is greater than the carried value on the packet header,
PrioMeter appends ⟨0011 0000⟩ as the data rate for PG1.

3.4 Updating Per-PG Data Rate

The transmitted packets embedded with the data rate measure-
ments reach the intermediate hops along the path before reaching
the destination. PrioMeter updates the data rate values for each PG
after checking them with their corresponding values in rate_reg.
The step includes the following operations:

1. Data rate extraction. First, PrioMeter extracts truncated val-
ues by checking the header value of the packet and using the offset
value of PGs. Like the truncation step, PrioMeter leverages the
same offset values in this step.

2. Dequantization. After extracting the truncated data rate values,
PrioMeter dequantizes them using the 𝑄𝐿. For instance, applying
𝑄𝐿 = 8 in Figure 3 yields the actual data rate value for each PG. In
our example, the dequantized value for the data rate of index 21

is 12,288 bits per second.

3. Update. If the obtained data rate value for a PG is higher than
the current value, PrioMeter updates it and starts the quantization
the same as collecting per-PG data rate. At the end of this step,
the packet is sent through the designated egress port toward the
destination.

3.5 Decoding Per-PG Data Rate

After collecting the data rate per PG by the PrioMeter, we can
extract the measured data from the receivers. This step includes
extracting the header values and dequantizing them as in the pre-
vious step. The received packets at the receiver have the data rate
information of all PGs for each end-to-end path.

3.6 Theoretical Analysis of Quantization for

Data Rate Measurement

By leveraging quantization for data rate measurement, we aim to
efficiently encode continuous data rate values into discrete quan-
tized levels using power-of-two numbers because of its support in
P4 using bit shift operators. We now analyze its impact on accuracy.

3.6.1 Quantization Levels and Precision. Quantization involves par-
titioning the continuous range of data rate values of PGs into a
finite set of discrete QLs. Assume that the number of QLs, denoted
byN , is determined by the number of bits used for quantization (𝛽)
in the second step of collecting per PG data rate. We can calculate
N as follows.

N = 2𝛽 (2)

The choice of N by the operator directly influences the preci-
sion of the quantized representation. A smaller 𝛽 produces fewer
QLs, leading to coarser quantization intervals and potentially lower
approximation error. In contrast, larger 𝛽 offers a fine-grained quan-
tization and adds higher approximation error. These two approx-
imation errors are due to the number of right shifts PrioMeter
performs on the measured data rates to compress them.

3.6.2 Quantization Error. Using quantization introduces a non-
negligible approximation error due to mapping continuous values
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to discrete QLs. We define this error 𝑄𝑒 as the difference between
the original data rate value (𝑟𝑝𝑔) and its quantized representation
(𝑟𝑞𝑝𝑔):

𝑄𝑒 = 𝑟𝑝𝑔 − 𝑟
𝑞
𝑝𝑔 (3)

As 𝛽 decreases, the quantization intervals become larger, and the
value of 𝑄𝑒 increases. Conversely, increasing 𝛽 reduces the size
of quantization intervals and the value of 𝑄𝑒 . We note that using
the sliding window for the data rate measurement may introduce
additional estimation error, and we plan to investigate this as part
of our future work.

3.6.3 Data Rate Compression Efficiency. Quantization enhances
data rate compression efficiency by representing data rate values
using fewer bits. Adding fewer bits to the packet header to perform
the per PG estimation can reduce the negative effect of our mea-
surements on the flow completion time and bandwidth usage. The
number of compressed bits to store the results of quantization and
truncation applied by PrioMeter can be calculated as follows:

𝜂 = |𝑃𝐺𝑠 | × 𝛽, (4)
where |𝑃𝐺𝑠 | is the total number of priority groups applied to differ-
ent traffic flows. However, data rate compression comes at the cost
of potential quantization error. The trade-off between header sav-
ings and acceptable approximation error requires carefully selecting
𝛽 based on the application’s tolerance to quantization error.

4 PRELIMINARY RESULTS

We implement PrioMeter on P4 for the Behavioral Model v2
(BMv2) switch [7] to check its feasibility and NS3 for the large-
scale evaluation. In this section, we report the results of the priority
aggregation-based approach using NS3 simulations [2]. We do simu-
lations using a dumbbell topology with two end-hosts connected to
each switch, and all links are 100 Gbps. We report the measurement
accuracy and the impact of different sliding windows when setting
the quantization level to 12. By setting this QL value, PrioMeter
does 12 right shifts on the measured data rate per PG, leading to at
most 32 Kbps estimation error without considering the length of the
measurement window. We generate traffic using the webSearch [4]
benchmark workload for scenarios when the link load is 80%. The
servers generate flows according to the Poisson process toward one
of two random servers as in previous studies [5].

We generate traffic for different priority groups (PGs) based on
the flow sizes. Table 1 reports how we classified them in our exper-
iments based on the cumulative flow size distribution of webSearch
workload [4].

4.1 Impact of Sliding Window Size

We first measure the impact of the sliding window size𝑤 on the rate
of different PGs, see Figure 4. We first generate 51 flows with eight
PG values in which their classification is based on their sizes (for
details please see Table 1). We report the results of measurements
for scenarios with 10, 50, and 100 microseconds sliding widows. We
observe that PrioMeter achieves the best accurate results when
the sliding window size is 50 microseconds. By checking the PGs of
flows, we find the higher priority flows with lower sizes completed

Table 1: Traffic size classes based on flow size distribution of

webSearch workload [4].

Class Flow size range

PG 1 0-10 KB
PG 2 10 KB - 50 KB
PG 3 50 KB - 200 KB
PG 4 200 KB - 1 MB
PG 5 1 MB - 2 MB
PG 6 2 MB - 5 MB
PG 7 5 MB - 10 MB
PG 8 > 10 MB

earlier than the lower ones, and PrioMeter reports zero rates when
their corresponding flows finished. Figure 5 reports the results of
measurements for different sliding windows when the QL=14. We
can observe that increasing the quantization level when the sliding
window is small reduces the accuracy of PrioMeter. Therefore,
operators can set QL according to the capacity of their links.

4.2 Comparison with Other Programmable

Tools

Then, we report on the effect of reporting the data rate information
of each priority group on the FCT of different workloads. We test
the performance of PrioMeter on the same FatTree topology as
HPCC [13] with 16 Core switches, 20 Agg switches, 20 ToRs, and 320
servers (16 per rack). Each server is connected to a ToR switch via
a 100 Gbps NIC. The capacity of all interlinks among the Core, Agg,
and ToR switches is 400 Gbps. In this topology, all the links have
a 1-microsecond propagation latency, and the buffer size of each
switch is 32 MB. We generate traffic using the flow size distribution
of webSearch [4] and use the same setting as in the first experiment
to assign PGs for various flows sizes. The servers generate flow
according to the Poisson process toward random servers.

Figures 6(a) and 6(b) show that PrioMeter has a similar 99𝑡ℎ
percentile FCT slowdown comparedwith HPCCwhen the flow sizes
are small, i.e., less than 256KB. However, HPCC adds more traffic
overhead to the network when the flows have more packets to send
since it adds the telemetry information from all hops to all packets.
In contrast, PrioMeter adds a fixed amount of traffic overhead to
packets, and the values of the overhead change at the end of the
measurement windows. Notice that HPCC is not designed to report
the data rate per PG. Assigning different PGs for the flows based on
their size in a priori aims at better traffic scheduling, and PrioMeter
adds less traffic overhead to each packet header whenmeasuring the
data rate at each hop. Moreover, the amount of overhead in HPCC
depends on the number of hops since it collects extra INT telemetry
information per hop, including timestamp, egress port utilization,
and queue length. On the contrary, PrioMeter’s overhead does
not increase with the number of hops in the network, thus, it scales
better in large networks.

5 CONCLUSION

In this paper, we design, implement, and evaluate a new end-to-end
per priority flow data rate estimation tool, PrioMeter, tailored
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Figure 4: The data rate measurement of PrioMeter for different sliding window lengths when QL=12.
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Figure 5: The data rate measurement of PrioMeter for different sliding window lengths when QL=14.
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Figure 6: The FCT slowdown for PrioMeter and HPCC on webSearch workload for 50- and 99-FCT percentiles. when the link

loads are 30% and 50%.

for the programmable networks setting. With PrioMeter we in-
clude the information of the measured data rates of various priority
groups to the packets to carry the data rate of each hop along the
path, which is now readily available in P4 programmable switches.
PrioMeter leverages two primitives, namely, quantization and
truncation to achieve its goals. We implement PrioMeter in P4
and test it on BMv2 switches and study different aspects of Pri-
oMeter in measuring the data rate of different priorities using NS3
simulations. We show that the performance of our tool is compara-
ble with the state-of-the-art tools, yielding minimal overhead while
estimating per priority flow data rate. We make our PrioMeter

implementation publicly available. We plan to implement and test
our system on Tofino switches as part of our future work.
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