
1

P4Flow: Monitoring Traffic Flows with
Programmable Networks

Habib Mostafaei, Shafi Afridi

Abstract—Cloud providers perform flow monitoring to get
insights from the network traffic flows, often using coarse-grained
packet counters or packet probing. These approaches give partial
information from ongoing flows or introduce significant overhead
if the probe packets cross multiple hops with diverse delay
and bandwidth to reach the traffic collector. Recently, In-band
Network Telemetry (INT) offered by programmable networks,
e.g., P4, has gained attention by providing fine-grained network
telemetry. Current attempts on INT are inflexible in collecting
telemetry for customs flows according to the desired interval.
This letter proposes P4FLOW, a flow monitoring tool for cloud
provider networks implemented on programmable data planes.
P4FLOW allows the providers to monitor a set of desired flows
according to their needs. It reduces at least 1.6x the overhead of
telemetry packets compared with the existing approaches.

Index Terms—Flow monitoring, Programmable networks, In-
band Network Telemetry (INT).

Habib Mostafaei and Shafi Afridi, P4Flow: Monitoring Traffic Flows with Programmable Networks, IEEE Communications Letters, 2021,
to appear.

c©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

I. INTRODUCTION

The network infrastructure of the cloud providers often con-
sists of thousands of switches/routers connected through the
links [1], [2]. The services, e.g., video streaming or congestion
control, running on these infrastructures generate a massive
number of traffic flows. The providers need monitoring tools
to get insights from ongoing network flows. SNMP, ping, or
other legacy tools can provide valuable information on the
status of flows. However, this can be improved by employing
the recent advances in programmable networks such as P4 [3].
The provider can get insights from the packets/flows and the
intermediate devices by using the In-band Network Telemetry
(INT) [4] provided by P4. However, getting the flow statistics
from each device adds significant overhead to the network.
Therefore, the providers desire to collect the flow information
from one of the devices in the path from a source to a
destination according to the application’s need.

Many techniques exist to collect flow statistics [5], [6], [7],
[8], [9]. OpenTM [7] and FlowCover [8] try to minimize
the cost of steering the telemetry information by selecting a
node from a source to a destination in SDN-based networks.
Nevertheless, these approaches add significant overhead to
the network. The goal of INT-path [6] and P2INT [9] is to
cover all the networks’ links to collect the flow statistics
in a P4-based network. The work in [10] concentrates on
coordinating of probe packets to get insights from the network
flows. However, these approaches focus on coordinating probe
packets to collect the flow statistics without considering the
overhead of steering probe packets to the collector.

H. Mostafaei and S. Afridi are with the Department of Telecommunication
Systems, Technische Universität Berlin, 10587 Berlin, Germany, e-mail:
{habib, safridi}@inet.tu-berlin.de.

In this letter, we propose a flow monitoring tool P4FLOW
that uses simple additive weighting technique to find the best
network devices to report the flow telemetry in a P4 network.
It adds less overhead to the network while providing the flexi-
bility to the users to poll the flow telemetry according to their
desired intervals and flows. We summarize our contributions
as follows.

• We propose a simple additive weighting-based technique
to select a leader node to poll the flow statistics.

• The users of P4FLOW can adjust the interval of having
flows telemetry information according to the applications’
needs.

• We report that P4FLOW injects significantly fewer pack-
ets compared with the existing techniques and improves
the flow completion time.

We make our code publicly available and our results fully
reproducible1.

II. PROBLEM FORMULATION

We model the network as an undirected graph G=(P,E)
in which P={𝑝1, 𝑝2, . . . , 𝑝𝑚} is a set of P4 switches and
E={𝑒1, 𝑒2, . . . , 𝑒𝑚} is the set of edges among them. The
network steers the traffic of n active flows F = { 𝑓1, 𝑓2, . . . , 𝑓𝑛}
where each flow 𝑓 consists of a set of P4 switches from a
source to a destination. We can report the flow information
using each P4 switch along the path, but this solution adds
additional overhead to the network due to injecting a large
number of packets. Therefore, our goal is to select a P4 switch,
i.e., a leader switch, along each flow 𝑓 to report the flow
information to the controller2. We call L 𝑓 as the leader switch
for flow 𝑓 . We assume that the first node in the graph is
the controller of the network being in charge of collecting
the flow information. To avoid possible congestion imposed
by the flow telemetry packets, we aim to steer the traffic for
telemetry packets via less congested links with high available
bandwidth.
Delay. In delay-sensitive applications, the flow information
should be forwarded to the controller with a short delay
to take a suitable reaction to the network changes. In such
scenarios, minimizing the delay between the leader switch and
the controller is desirable. Let 𝐷𝑖 𝑗 denotes the link latency
from switch 𝑝𝑖 to 𝑝 𝑗 . We denote the sum of link delays along
the path from the leader switch L 𝑓 to the controller for flow
𝑓 as 𝐷 (𝑓). Therefore, our goal is to minimize the value of
𝐷 (𝑓) for each flow in F .

1https://github.com/mostafaei/P4Flow
2We use the general term of the controller in this work since in our

implementation the P4 runtime plays the role of the controller.

https://github.com/mostafaei/P4Flow

2

Bandwidth. We desire to send the flow telemetry to the
controller using the links with the highest available bandwidth.
In that case, the link with the minimum available bandwidth
specifies the available bandwidth. Let 𝐵𝑖 𝑗 denotes the available
bandwidth from switch 𝑝𝑖 to 𝑝 𝑗 . We can compute the available
bandwidth for flow 𝑓 , i.e., 𝐵(𝑓), by taking the minimum
available bandwidth of all links along the path from L 𝑓 to
the controller. Herein, our goal is to maximize 𝐵(𝑓) for each
flow in F .
Objective functions. The main goal is to minimize the
delay of steering the flow telemetry to the controller while
obeying the bandwidth constraints of the links. We use a
simple-additive weighting method [11] to transform the multi-
objective selection problem into a single one. We define our
objective function 𝐹 as the weighted sum of normalized values
for delay and bandwidth for each flow 𝑓 as follows.

𝐹 (𝑓) = 𝑤𝑑 × 𝐷 (𝑓) − 𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛

+ 𝑤𝑏 ×
𝐵(𝑓) − 𝐵𝑚𝑖𝑛

𝐵𝑚𝑎𝑥 − 𝐵𝑚𝑖𝑛

(1)

where 𝑤𝑑 , 𝑤𝑏 ≥ 0 and 𝑤𝑑 + 𝑤𝑏 = 1, are weights for
link latency and the available bandwidth. 𝐷𝑚𝑖𝑛 (𝐷𝑚𝑎𝑥) and
𝐵𝑚𝑖𝑛 (𝐵𝑚𝑎𝑥) are the minimum (maximum) value for overall
expected latency and available bandwidth. We normalize the
values of link latency and available bandwidth to adjust the
selection metrics. After normalization, each value varies in the
range of [0, 1], where the value of 0 corresponds to the worst
value, i.e., 𝐷 (𝑓) = 𝐷𝑚𝑎𝑥 and 𝐵(𝑓) = 𝐵𝑚𝑖𝑛 , and the value
of 1 corresponds to the best value, i.e., 𝐷 (𝑓) = 𝐷𝑚𝑖𝑛 and
𝐵(𝑓) = 𝐵𝑚𝑎𝑥 . Therefore, our objective is to minimize 𝐹 (𝑓),
mathematically,

min
∀ 𝑓 ∈F

𝐹 (𝑓)

This model can be extended to include other parameters,
e.g., the cost of sending the flow information, in selecting L 𝑓

for each flow 𝑓 .

III. THE ALGORITHM

In this section, we first present a greedy approach to select
a switch in a flow to send the flow information. Then, we
explain the P4 implementation of P4FLOW in detail.

A. The Switch Selection Algorithm

The control plane of P4FLOW takes the set of flows F
and the coefficient for the link parameters, i.e., latency, and
bandwidth, as the inputs. Then, it checks the value of the
objective function in eq. 1 and selects the switch in the path
with minimum value as the leader switch to send the flow
information. Algorithm 1 presents the pseudo code of the
leader selection algorithm in P4FLOW.

The algorithm checks the possibility of each switch in the
flow for being a leader switch to report the flow information.
To do so, the leader selection algorithm checks its distance to
the controller using the inter-node delays and their available
bandwidth. There might be multiple paths from a switch to the
controller, and we use the Dijkstra algorithm to select the best
path. It is a single-source shortest path algorithm that works

Algorithm 1: Leader node selection
input : Network graph 𝐺, links delay and bandwidth, flow list (F)
output: A list of leader switches L

1 Function findLeaderSwitch():
2 L = ∅ ;
3 for each 𝑓 ∈ F do
4 t = ∞;
5 for 𝑝 ∈ 𝑓 do
6 𝐹𝑝 = apply eq. 1;
7 if 𝐹𝑝 < 𝑡 then
8 𝑡 = 𝐹𝑝 ;
9 L 𝑓 = 𝑝;

10 end
11 end
12 L = L⋃ L 𝑓 ;
13 end
14 return L;
15 End Function

with non-negative edge weights. The running time of Dijkstra’s
algorithm is less than other algorithms such as Bellman-Ford’s
one for the same problem. Furthermore, the time complexity
of Dijkstra’s algorithm can be improved using the Fibonacci
heap. The network administrators can adjust each link’s cost
according to the objective function in eq. 1 since it has a non-
negative value. After selection of the best path, we compute
the objective function of eq. 1 to check the suitability of the
switch. We select the switch with a minimum value of 𝐹 in
the flow as the leader. Then, the algorithm adds this node to
the list of leader switches L. We repeat the same procedure
for all the flows.

B. P4 Implementation

P4FLOW can monitor all the packets of all the flows
in the network. However, this adds significant overhead to
the network, which operators are reluctant to do. Therefore,
P4FLOW allows the operator to define a time interval for
the flow telemetry. For example, if the flows are sensitive
to the delay, the threshold value for the time interval can
be chosen as a small value. While for other traffic flows, a
large threshold value is desirable to reduce the overhead. This
value can be tuned using the control plane rules. We use a
P4 register to keep the threshold value for the interval. To
do so, the network administrators can set the initial value
for the threshold depending on the services offered by the
cloud service providers. If the flows carry the traffic of the
critical business transaction information, the threshold value
for the time interval has to be small to identify the problem
quickly [2]. For example, Akami [12] in 2017 report that each
100ms of network delay results in a 7% revenue reduction.
For other flows, such as the flows that carry the email data,
the time interval for the threshold can be set to a high value.

P4FLOW consists of two main phases, namely, tracking
flows and collecting telemetry. It performs flow tracking in
the ingress control flow of each switch to specify where the
packet has to be sent, i.e., to the next hop or the controller.
Collecting flow telemetry is carried out in the egress control
flow. We now explain the P4 implementation of our tool.
Tracking flows. To track the flows, we need to keep the state
of each flow in the leader switches. Upon entering a packet
of a flow to the ingress control flow, P4FLOW performs a

3

register<bit<48>>(1) pkt_thd_reg;
register<bit<48>>(MAX_ENTRIES) timer_reg;
action do_clone_e2e(){
clone3(CloneType.E2E,E2E_CLONE_SESSION_ID,meta); }

action mark_packet(){
meta.flag = 1;
data=hdr.ipv4.srcAddr ++ hdr.ipv4.dstAddr ++ hdr.tcp.

srcPort ++ hdr.tcp.dstPort ++ hdr.ipv4.protocol ++
meta.last_timestamp ++ meta.packet_size;

}
table generate_clone{
actions = {

do_clone_e2e;
NoAction; }

default_action = NoAction();
}
apply {

pkt_thd_reg.read(meta.pkt_thd, 0);
time_t timer_cnt;
time_t timer_tmp;
time_t cur_time = standard_metadata.
ingress_global_timestamp;
timer_reg.read(timer_tmp , (bit<32>) meta.FlowID);
timer_cnt=cur_time-timer_tmp;
if(!IS_E2E_CLONE(standard_metadata)){

if (cur_time>meta.pkt_thd){
timer_reg.write((bit<32>)meta.FlowID, timer_cnt);
mark_packet();
}

if(meta.flag == 1){
generate_clone.apply(); }

}
else{

//fill telemetry header data
}

}

Fig. 1: Egress control flow of P4FLOW.

matching based on the source and destination IP addresses
provided by the control plane and assigns an ID to each flow,
i.e., FlowID. Then, it checks if the packet belongs to that flow
or it is a telemetry packet. In both cases, P4FLOW forwards
the packets according to the forwarding rules either to the
destination of the flow or the controller. We assign a unique
ID for each flow belonging to the traffic of different flows,
while for all the telemetry packets we use one ID to save
memory space of the switches.
Collecting telemetry. We use P4 registers to keep track
of the flow statistics at the egress control flow. Each P4
register can keep the state of the flows in the memory
of the switch. We get the timestamp of each packet from
egress_global_timestamp metadata. Fig. 1 shows the
part of the egress control flow implementation of P4FLOW.

In Fig. 1, we define two registers, namely, pkt_thd_reg
and timer_reg, to store the time interval threshold value to
report the flow statistics and the timestamp of the packets for
each flow, respectively. We initialize the timer_reg to zero
to keep track of the flows using their FlowID. Upon receiving
a packet of a flow, P4FLOW updates the corresponding register
value of timer_reg associated with that flow. The algorithm
checks this value with a user-defined threshold value to send
the flow information. To collect the statistics regarding the
number of packets for each flow, we can use P4 Counters
or packet_length metadata filed. P4FLOW sends the flow
information to the controller when the timer reaches the
threshold value. We now explain the procedure of sending the
flow telemetry.

Packet generation. There is no built-in mechanism in P4 to
generate the packets, but we can use a copy of the current
packet to send it to the desired egress port. One example
solution is to clone the packet. Therefore, we use the clone
egress to egress or clone_e2e primitive to mark the
flow information on the packet header similar to [13]. The
mark_packet action in Fig. 1 concatenates all the telemetry
data to one bitstring and appends it to the cloned packet. This
data field includes source and destination IP addresses, source
and destination ports, and protocol fields to distinguish differ-
ent flows. Additionally, we concatenate the last timestamp the
telemetry updated and the size of transmitted data to this field.
We define a one-bit metadata variable called flag to specify
if the packet should be cloned at the egress control flow by
applying generate_clone table.

IV. EVALUATION

In this section, we first report the performance of our system
on two custom graphs. Then, we measure the impact of the
telemetry packets on the Flow Completion Time (FCT) on a
real-network topology taken from [14].

A. Performance on Custom Graphs

We generate two graphs, namely, Waxman and Erdös-Rényi,
each one with 200 nodes to compare the performance of differ-
ent algorithms. We use 𝛼 = 0.60 and 𝛽 = 0.06 as the values for
the model parameters in generating Waxman graph in Python.
Similarly, we set 𝑝 = 0.05 as the probability of edge creation
in Erdös-Rényi graph. Both graphs are widely used by the
network community for research purposes. The Waxman graph
has 644 edges, while the Erdös-Rényi graph has 1004 edges.
We set each link latency value of the graphs by randomly
selecting a value from the U.S network latency reported by
AT&T [15]. Finally, we randomly assign a bandwidth value in
Mbps for each link in the range of 10 to 40 Mbps. We generate
100 to 1000 uniformly random flows in which each flow 𝑓

has maximum hops of six and assume that they are assigned
using the traffic engineering techniques such as the ones in [2].
Therefore, P4FLOW leverages the spare network capacity to
steer the telemetry packets. We measure the reporting delays
and the message overhead to the controller/collector. We also
report the running times of the algorithms.

We compare the performance of P4FLOW with those of
OpenTM [7] and FlowCover [8] as two state-of-the-art flow
monitoring tools. The network operators can adopt these
approaches to monitor custom flows. However, several other
works concentrate on the different aspects of flow monitoring
such as coordinating the INT packets or monitoring all links.

OpenTM [7] considers the traffic matrix of the network and
aims to minimize the number of telemetry packets. It offers
different mechanisms for switch selection such as random, the
last switch, and the least-loaded one. We implement the last
switch selection in this work. FlowCover [8] aims to minimize
the flow monitoring cost with high accuracy. It selects the
switch that carries the highest number of flows in the network.
To implement FlowCover, we check all switches in all the
flows and pick the most frequent ones as the leaders. To have

4

a fair comparison with OpenTM and FlowCover, we use the
same P4 code of P4FLOW to run the experiments but with
the chosen leader nodes by each approach. Herein, selecting
different values for the time interval can negatively impact the
obtained results.
Reporting delay. Fig. 2 reports the flow statistics message
delays for all systems on Waxman and Erdös-Rényi graphs.
We take the sum of the link delay of each hop from the leader
switches to the controller. The reporting delay of P4FLOW on
average is 1.2x and 1.4x less than FlowCover and OpenTM
on Waxman graph (see Fig. 2a). This improvement on Erdös-
Rényi graph is 1.57x and 1.71x compared with the other
approaches since the graph has more edges (see Fig. 2b). The
main reason for such an improvement of P4FLOW is due to the
parameters, e.g., inter-node delay, that considers in selecting
leader switches.

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Flows

90
100
110
120
130
140
150

R
ep

or
tin

g
de

la
y

[m
s]

P4Flow FlowCover OpenTM

(a)

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Flows

60
70
80
90

100
110
120
130

R
ep

or
tin

g
de

la
y

[m
s] P4Flow FlowCover OpenTM

(b)

Fig. 2: The reporting delays of the systems on; a) Waxman
graph. b) Erdös-Rényi graph.
Overhead. We compute the overhead of the telemetry packets
for each flow 𝐶 (𝑓) as follows.

𝐶 (𝑓) = H 𝑓 × S, (2)

where H 𝑓 and S are the number of hops from the L 𝑓 to the
controller and probe packet size, respectively.

Fig. 3 reports the flow statistics overhead of all systems
for the same graphs. We use the same message size in all
approaches to have a fair comparison. Fig. 3a shows that
the message overhead of P4FLOW on average is 1.63x and
1.78x less than FlowCover and OpenTM on the Waxman
graph. We have similar improvement on Erdös-Rényi graph
and P4FLOW has 1.60x and 1.76x less overhead compared
with the other approaches (see Fig. 3b). The main reason for
such an improvement is that P4FLOW uses fewer hops to send
the flow statistics messages.

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00

Flows

3000
3500
4000
4500
5000
5500
6000

O
ve

rh
ea

d
[b

yt
es

]

P4Flow FlowCover OpenTM

(a)

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00

Flows

2500
3000
3500
4000
4500
5000
5500

O
ve

rh
ea

d
[b

yt
es

]

P4Flow FlowCover OpenTM

(b)

Fig. 3: The message overhead of the systems on; a) Waxman
graph. b) Erdös-Rényi graph.

Running time. We now measure the running time of the leader
selection algorithm in P4FLOW, OpenTM, and FlowCover.

Fig. 4 shows the running time of all systems for the same
graphs. OpenTM selects the last node of a flow to report the
flow statistics. Thus, its running time is constant and close to
zero. The running time of FlowCover increases by increasing
the number of flows because it has to check which node is the
most repeated in all flows. P4FLOW first ranks the node and
then applies the leader selection algorithm to choose a node
based on objective function in eq. 1. Therefore, its running
time is higher than the other two approaches. However, this
running time has less impact on the performance of the system
since the network administrator can proactively execute it.

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Flows

0.0
0.5
1.0
1.5
2.0
2.5
3.0

E
xe

cu
tio

n
tim

e
[s

]

P4Flow FlowCover OpenTM

(a)

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Flows

0.0

0.5

1.0

1.5

2.0

E
xe

cu
tio

n
tim

e
[s

]

P4Flow FlowCover OpenTM

(b)

Fig. 4: The running time of the systems on; a) Waxman graph.
b) Erdös-Rényi graph.

B. Performance on WAN Networks

We now report the impact of flow telemetry on the FCT of
different systems using an example wide-area network.
Testbed. We conduct the simulation using Mininet net-
work emulator on a VM with an Intel Xeon CPU AMD
Opteron(TM) Processor 6272 2.1GH with 32 GB RAM and
16 CPU cores running Ubuntu server 18.04. Mininet is the
defacto emulation tool used by the P4 consortium to test the
functionality of the P4 programs. We also apply the recom-
mendation [16] of the P4 consortium to gain high throughput
from BMv2 switches in Mininet.
Workloads. We use one of the most popular empirically
derived realistic workloads, i.e., FaceBook [17]. The traffic
distribution is in this workload is heavy-tailed. We leverage the
traffic generator in [18] to generate the desired flows according
to a Poisson distribution of the workload and network load.
The traffic generator generates traffic from 50 different sources
that are randomly chosen from the network topology. The
network load varies in the range 10% and 60%. The traffic
generator can generate different flow sizes, but we limit them
to the small size flows, i.e., flow size < 100 KB due to the
limitations of our links in Mininet. However, this can be tuned
according to the capacity of each link. We generate 1000 flows
from each source with 0.8 ms as the threshold interval and
report the averaged results over 10 different runs.
Topology. We compare the FCT of P4FLOW with those of
OpenTM and FlowCover on RocketFuel [14] topologies such
as AS3967 as an example and report some representative
results. We use the same links delay and bandwidth for these
topologies since their exact values are unavailable.
FCT comparison. We now measure the impact of the leader
nodes’ selection on the FCT of flows. The goal is to understand
the impact of the flows telemetry’ overhead on FCTs. Fig. 5

5

10 20 30 40 50 60
Load (%)

0.35

0.4

0.45

0.5

0.55

A
ve

ra
ge

FC
T

(s
)

Flow size (0, 100KB)
P4Flow FlowCover OpenTM

(a)

10 20 30 40 50 60
Load (%)

2.5

3.0

3.5

4.0

4.5

99
-p

er
ce

nt
ile

FC
T

(s
) Flow size (0, 100KB)

P4Flow FlowCover OpenTM

(b)

Fig. 5: Comparisons of FCT for P4FLOW, OpenTM, and
FlowCover. a) Average FCT of small flows. b) the 99𝑡ℎ

percentile of small flows.

shows average FCT and the 99𝑡ℎ percentile of flows of
P4FLOW, FlowCover, and OpenTM on AS3967. P4FLOW im-
proves up to 1.04x and 1.24x the FCT of flows over FlowCover
and OpenTM, respectively. Furthermore, this improvement in
the 99𝑡ℎ percentile FCT of flows is up to 1.08x and 1.29x
compared with FlowCover and OpenTM. The results confirm
that selecting proper leader nodes impacts the FCT of the flows
in the network.

V. PRACTICAL APPLICATION SCENARIOS

In this section, we briefly explain some practical applica-
tion scenarios that P4FLOW can help. The first application
scenario is geo-distributed streaming applications running on
distributed processing systems such as Apache Flink. Many
organizations leverage these systems to get invaluable insights
from their customers by collecting information regarding the
users’ clicks on the websites or finding trends on social
networks [19]. Depending on the queries running on this
massive amount of data generated by the users, the network
administrators can tune the time interval of collecting flow
statistics. The other scenarios are video streaming or online
gaming. The network operators can set the threshold value to
gather the flow statistics depending on the sensitivity of the
traffic flows. For example, delaying the flows in the video
streaming scenarios can degrade the quality of experience
(QoE) [20].

VI. CONCLUSION

In this letter, we proposed a network flow monitoring tool
for programmable networks. Our tool can reduce the overhead
of reporting the flow statistics by considering the properties
of the inter-node links such as delay and bandwidth. The
P4-based implementation of our approach showed that it can
efficiently report the flow telemetry while improving the flow
completion time. Furthermore, it allows the provider to tune
collecting the flow statistics according to the applications’
needs.

ACKNOWLEDGMENT

This work was partially funded by the German Ministry for
Education and Research as BIFOLD - Berlin Institute for the
Foundations of Learning and Data (ref. 01IS18025A and ref.
01IS18037A).

REFERENCES

[1] Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li, Z. Zheng, L. Zhu,
Z. Shen, Y. Xi, P. Zhang, D. Cai, M. Zhang, and M. Xu, “Flow event
telemetry on programmable data plane,” in SIGCOMM, 2020, p. 76–89.

[2] H. Mostafaei, M. Shojafar, and M. Conti, “TEL: Low-latency failover
traffic engineering in data plane,” IEEE Transactions on Network and
Service Management, pp. 1–1, 2021.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, Jul. 2014.

[4] The P4.org Applications Working Group, “In-band network teleme-
try (INT) dataplane specification v2.1,” https://github.com/p4lang/
p4-applications/tree/master/docs, 2020.

[5] J. Kučera, D. A. Popescu, H. Wang, A. Moore, J. Kořenek, and G. An-
tichi, “Enabling event-triggered data plane monitoring,” in Proceedings
of the Symposium on SDN Research, ser. SOSR ’20, 2020, p. 14–26.

[6] T. Pan, E. Song, Z. Bian, X. Lin, X. Peng, J. Zhang, T. Huang, B. Liu,
and Y. Liu, “INT-path: Towards optimal path planning for in-band
network-wide telemetry,” in IEEE INFOCOM 2019 - IEEE Conference
on Computer Communications, 2019, pp. 487–495.

[7] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: Traffic matrix
estimator for openflow networks,” in Passive and Active Measurement,
A. Krishnamurthy and B. Plattner, Eds. Springer Berlin Heidelberg,
2010, pp. 201–210.

[8] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “FlowCover: Low-cost flow
monitoring scheme in software defined networks,” in 2014 IEEE Global
Communications Conference, 2014, pp. 1956–1961.

[9] A. G. Castro, A. F. Lorenzon, F. D. Rossi, R. I. T. d. C. Filho, F. M. V.
Ramos, C. E. Rothenberg, and M. C. Luizelli, “Near-optimal probing
planning for in-band network telemetry,” IEEE Communications Letters,
vol. 25, no. 5, pp. 1630–1634, 2021.

[10] R. Hohemberger, A. G. Castro, F. G. Vogt, R. B. Mansilha, A. F.
Lorenzon, F. D. Rossi, and M. C. Luizelli, “Orchestrating in-band data
plane telemetry with machine learning,” IEEE Communications Letters,
vol. 23, no. 12, pp. 2247–2251, 2019.

[11] E. Triantaphyllou, Multi-criteria decision making methods. Springer,
2000.

[12] J. Young and T. Barth, “Web performance analytics show even 100-
millisecond delays can impact customer engagement and online rev-
enue,” 2017, Akamai Online Retail Performance Report, https://bit.ly/
3xznKyT.

[13] R. Joshi, T. Qu, M. C. Chan, B. Leong, and B. T. Loo, “BurstRadar:
Practical real-time microburst monitoring for datacenter networks,” in
Proceedings of the 9th Asia-Pacific Workshop on Systems, ser. APSys
’18, 2018.

[14] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” SIGCOMM Comput. Commun. Rev., vol. 32, no. 4, p.
133–145, Aug. 2002.

[15] ATT Global IP Network Latency, “U.S. network latency,” http://soc.att.
com/3sfHMxr.

[16] P4 Language Consortium, “Performance of bmv2,” 2020, https://github.
com/p4lang/behavioral-model/blob/main/docs/performance.md.

[17] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, ser.
SIGCOMM ’15, 2015, p. 123–137.

[18] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling {ECN} in multi-
service multi-queue data centers,” in 13th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 16), 2016, pp.
537–549.

[19] H. Mostafaei, S. Afridi, and J. H. Abawajy, “SNR: Network-aware
geo-distributed stream analytics,” in 2021 IEEE/ACM 21st International
Symposium on Cluster, Cloud and Internet Computing (CCGrid), 2021,
pp. 820–827.

[20] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, ser. SIGCOMM ’17, 2017, p.
197–210.

https://github.com/p4lang/p4-applications/tree/master/docs
https://github.com/p4lang/p4-applications/tree/master/docs
https://bit.ly/3xznKyT
https://bit.ly/3xznKyT
http://soc.att.com/3sfHMxr
http://soc.att.com/3sfHMxr
https://github.com/p4lang/behavioral-model/blob/main/docs/performance.md
https://github.com/p4lang/behavioral-model/blob/main/docs/performance.md

	Introduction
	Problem Formulation
	The Algorithm
	The Switch Selection Algorithm
	P4 Implementation

	Evaluation
	Performance on Custom Graphs
	Performance on WAN Networks

	Practical Application Scenarios
	Conclusion
	References

