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A B S T R A C T

Energy efficiency is one of the critical challenges in wireless sensor networks because the nodes in such net-
works have limited resources. Therefore, they should be managed efficiently in order to exploit the network’s
functionality for a longer period of time. Topology control mechanisms can help the nodes to leverage their
resources efficiently. Several topology control protocols for WSNs have been proposed to decrease energy con-
sumption of the nodes and increase the network capacity. Leveraging a lower transmission range can help the
nodes to mitigate their energy consumptions. In this paper, we propose a topology control protocol based on
learning automaton, which is named LBLATC. The learning automaton of every sensor node chooses the proper
transmission range of the node using the reinforcement signal which is produced by the learning automaton of
neighbor sensor nodes. The simulation runs carried out to verify the performance of the proposed protocol. It
acts on average 15% better than current state-of-art in term of selecting a proper transmission range.

1. Introduction

Wireless sensor networks (WSNs) have been widely used in many
fields like surveillance systems, detecting unexpected events, environ-
mental monitoring, military, etc. (Yang, 2014). The proliferation of
these network creates Internet of Things (IoT) (Gubbi et al., 2013). As
such, WSNs are widely used in IoT applications to gather the informa-
tion around us. Sensor nodes in WSNs have many resource limitations
such as battery, computation, etc. Therefore, it is necessary to save their
resources in order to use the network for a long period of time. Thus,
energy efficiency is a key issue in these networks (Mostafaei and Menth,
2018; Pantazis et al., 2013). Coverage and topology control algorithms
have impact on the lifetime of WSNs. Therefore, coverage and topol-
ogy control algorithms have been considered in many research works.
For example, a learning automaton based method to meet the coverage
requirements of a network is proposed in (Mostafaei et al., 2017) to
improve overall lifetime of the network.

In this paper, we consider the problem of extending wireless sensor
networks (WSNs) lifetime. As data transmission constitutes the high-
est energy consumption tasks in WSNs, an efficient mechanism for
data transmission in WSNs is a common approach for optimizing the
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energy usage of sensor nodes. Therefore, one of the main objectives of
topology control mechanisms in WSNs is to coordinate the network’s
nodes by choosing a suitable transmission range for them. This helps
in creating a network with few links between the nodes. Therefore,
the energy consumptions are minimized and the network lifetime can
be increased. As suitable topology can boost the performance of a net-
work, several protocols have been proposed to adjust the transmission
ranges of nodes in sensor networks (Zhang et al., 2015; Lin et al., 2016;
Li et al., 2013). The quality of the selection differs according to differ-
ent priorities and conditions. Each selection criteria can have different
performance because it has a direct effect on energy consumption of
the nodes. One of the advantages of adjusting the transmission range
is that the obtained topology is not too dense. Therefore, exploiting
less dense work results in having less intermission among the selected
nodes which is not considered by recent state-of-art works in (Aziz et
al., 2013; Santi, 2005; Abolhassani et al., 2009).

In homogeneous networks, all nodes have the same transmission
range. However, these networks do not have a proper efficiency, dura-
bility, and robustness. Heterogeneous networks, also, use sensors with
the same transmission ranges, and, despite the density in neighboring
sensors, each sensor chooses its own transmission range to maintain the
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network connectivity. As a result, such networks are more robust and
efficient than homogeneous ones (Aziz et al., 2013; Santi, 2005).

In this paper, we propose a topology control protocol based on learn-
ing automaton. The proposed algorithm considers the network density
to select the transmission range for every node and these transmission
ranges are not the same for all nodes. The main contribution of this
paper can be summarized as follows; i) We model the topology con-
trol problem with the network of learning automaton; ii) We propose
a novel algorithm to select appropriate transmission ranges for sensor
nodes, and iii) We demonstrate the efficacy of the proposed algorithm
through extensive simulation to validate that the proposed algorithm
saves the sensor node energy and consequently improves the network
lifetime. Our algorithm can be applied for the monitoring applications
such as military zone monitoring to track the objects and vehicles, and
all monitoring applications that suffer from efficiency. The rationale
behind using the learning automaton is that it requires O(n) to solve an
NP-hard or an NP-complete problem (Mostafaei et al., 2017).

The rest of the paper is organized as follows. Section 2 briefly
reviews the related work. Problem definition stated in Section 3.
In Section 4, the learning automaton theory is presented. Section 5
presents the proposed algorithm. Section 6 shows the performance of
the proposed algorithm through simulations. Section 7 concludes the
paper.

2. Related work

Energy-efficient topology control algorithms proposed for WSN are
classified in four different groups (Torkestani, 2013; Li et al., 2013):
i) power-adjustment approach, ii) power-mode approach, iii) clustering
approach and iv) hybrid approach. The power-adjustment approach is
the most common form of the topology control in which each sensor
node dynamically adjusts the transmission range of its radio to min-
imize the power consumption during transmission. In this approach,
the adjacent sensor nodes try to find the appropriate (lowest possible)
transmission range to keep the network connected. The aim here is to
find the minimum range of transmission so that the qualities of a good
network are guaranteed.

The protocols themselves are categorized into three groups. The first
one contains location-based protocols like (Santi, 2005; Li et al., 2005;
Zhang et al., 2016). In these protocols each network node knows its
own exact location using GPS and can create a proper topology for the
network. The second group pertains to location-based protocols. Here,
the nodes do not have the exact information about their location but
are able to detect the direction of their neighbors (Santi, 2005). The
third group contains the neighbor-based protocols in which the nodes
have limited information about their neighbors. This information can
be the ID number, distance, or quality of the neighbors such protocols
in Kneigh (Blough et al., 2003) and XTC (Wattenhofer and Zollinger,
2004). Another topology control protocol is RAA − 2L in which each
node chooses either Rs or Rw (Rw < Rs) to be its transmission range. If
the node of Rw can communicate with that of Rs, the node chooses Rw,
otherwise it chooses Rs.. In RAA − 3L the node chooses one of the Rw,Rs
or Rt(Rw < Rt < Rs).

The reliable topology control in WSNs has been studied in (Lee et al.,
2013; Khalil and Ozdemir, 2017; Haque et al., 2015; Deniz et al., 2016).
Lee et al. (2013) devised a distributed topology construction mechanism
for the reliable topology control issues which the proposed algorithm
takes energy efficiency into consideration for real applications. The pro-
posed algorithm can maintain the connectivity of the nodes in the net-
work and it can also extend the network lifetime. Haque et al. (2015)
used the graph theory concepts to provide a reliable topology for a WSN
to minimize the network energy consumption. They proposed various
algorithms like minimum spanning tree and shortest path tree methods for
data delivery in a WSN.

A PSO-optimized, minimum spanning-tree based topology control
scheme is proposed in (Guo et al., 2013). In the proposed scheme,

Table 1
Notations of this work.

Symbols Definitions

S(L × W) The network area
N The number of nodes in the network
ni A simple sensor
R1 The low power transmission range of sensor ni
Rt The high power transmission range of sensor ni
A1 A set of 60% of neighbors
At A set of all neighbors
Ni the number of neighbor nodes of node ni
Dni distance between the neighbor node and the current node
pi the average transmission power of node i
pavg the average transmission power of all nodes
ei(t) the residual energy of node i at time t

they transformed the problem into a model of multi-criteria degree
constrained minimum spanning tree (MCD-MST) and designed a non-
dominated discrete particle swarm optimization (NDPSO) to deal with
this problem.

Cluster-based topology control have been studied by researchers in
(Leu et al., 2015; Jameii et al., 2016). The concept of clustering helps
algorithms to construct more scalable topology control protocols which
are easily manageable. In the clustering approaches nodes are divided
into clusters and in each cluster only the cluster-head is responsible for
handling the communications. A cluster member can be activated when
it is required. This concept aims at minimizing the number of required
active nodes in the network.

The concept of Connected Dominating Set (CDS) has been often
leveraged. A CDS is a subset of vertices such that every vertex is either
in the subset or adjacent to a vertex in the subset and the subgraph
induced by the subset is connected. In this approach CDS nodes can
be active to maintain the network requirements while non-CDS nodes
remain idle state to save their energy. In a CDS based algorithm for
WSNs each node in the network is either a member of CDS or a neigh-
bor of a node in CDS. Ma et al. (2007) used a minimum connected
dominating set approach to construct an energy efficient topology con-
trol protocol in WSNs. Their protocol used the shortest path approach to
find a path from every node in the network to sink node. Qureshi et al.
(2013) performed a three CDS based approaches for the topology con-
trol based the number of messages, the energy overhead, the amount
of residual energy, the number of unconnected nodes, and convergence
time. Mostafaei et al. (2015) proposed a degree constraint dominating
set approach to control the nodes of the network in order to improve
the lifetime of a WSN providing partial coverage.

In this paper, we leverage learning automaton to select a suitable
transmission range for each node by considering the energy consump-
tions of the nodes because adjusting the transmission range of each
node has a determinant impact on nodes energy consumption. There-
fore, we exploit this fact to devise our algorithm. Learning automaton
of each node is in charge of choosing the transmission range.

3. Problem overview

In this section, we state the required definitions for the topol-
ogy control problem and formal definition of the considered problem.
Table 1 shows the symbols that are used in this paper.

Wireless Sensor Network (WSN) is composed of N randomly
deployed nodes in a two-dimension network with size of L × W where
L and W are the length and width of the network area, respectively.
Each node can sense the environment within its sensing range (Rs) and
can communicate with the nodes within its transmission range.

Transmission ranges. In this paper, we assume that every node has
two different transmission ranges. Each sensor node can choose one of
these two ranges arbitrarily as the transmission range which is deter-
mined based on the density of nodes with their maximum transmis-
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Fig. 1. Two sample nodes with different transmission and identical collections
are shown by comparing the right and left figurer and determining the range
of different nodes; nodes dispersion method in determining the range of each
node is effective.

sion range. The transmission range with low power denoted as R1 and
one with high power denoted as Rt where R1 < Rt. In this model, the
number of nodes with R1 as transmission range is proportionate to the
number of neighbor nodes (i.e., the density of each node). For example,
in Fig. 1 node n11 has two transmission ranges. The number of nodes
with R1 transmission range is equal to the distance that covers 0.6 of
all the neighbors in the maximum range of that node. The number of
Rt is equal to the maximum range of nodes. When the distance between
two nodes is less than the amount of Rt, those two nodes will be consid-
ered as neighbors. Every node puts its neighbors in two different sets,
namely, A1 and At sets. They are divided by the following equations
(Eq. (1)). In this equation, Ni is the number of neighbor nodes, and Dni
is the distance between the neighbor nodes (ni) and the current node.{

Ni ∈ A1 if Dni ≤ R1

Ni ∈ At if Dni ≤ Rt
(1)

Let assume that node n11 has ten nodes in its neighborhood. Accord-
ing to our model, the transmission range R1 covers 60% of the nodes
which includes six nodes. In the meantime, Rt includes all the nodes in
the neighborhood of this node. Therefore, we have six nodes in A1 and
ten nodes in At sets.

We give an example to demonstrate the impact of selecting a proper
transmission range for each node. Fig. 1 demonstrates an example of
a network with eleven nodes. As it was shown in the right-hand side
figure decreasing the transmission range does not change the A1 and
At sets, but it can help to save residual energy of the node. The reason
for this result relies on using a lower transmission range for each node
because the energy consumption of each node is determined based on
this parameter. Therefore, having a longer transmission for each node
results in using more energy from that node. Fig. 2 shows an example
of applying topology control algorithm on a network without loss of
connectivity of the nodes. As it is clear from Fig. 2, reducing the trans-
mission range of the node has not any effect on the connectivity of the
nodes but it aims to save the energy of the nodes.

Formal definition of the problem. Given a randomly scattered net-
work with N nodes, the considered topology control problem is the
choice of minimum transmission range (i.e., R1 or Rt) for each node
in such a way that the energy consumption of the node is minimized.
Assume that Pavgi is the average transmission power of node i. Then, the
object is to minimize the average transmission power (pavg) of all nodes
which is defined as follow;

pavg =
∑n

i=1 pi
n

(2)

where, pi is the transmission power of node i and n is the number of
nodes in the network. By considering Eq. (2), the overall energy of the
network is defined as a function of z and can be computed by:

Fig. 2. Left network topology before the execution of the protocol vs. the right
network topology after.

Fig. 3. Stochastic automaton.

e(z, t) = lim
t→∞

1
S

n∑
∀ni∈N

ei(t) (3)

in which S is the network area and ei(t) is the residual energy of node
i at time t, respectively. Therefore, the objective of this is to minimize
the power consumption of the nodes and maximize the overall lifetime
of the network.

min pavg ,

maxe(z, t)
(4)

4. Learning automaton

We can consider the automaton as abstract objects that can per-
form a specific number of actions. Every time this object chooses one
action among a collection of actions, its performance is evaluated in
a random environment, and the achieved answer of the environment
is used to choose the next action of the automaton. During this pro-
cess the automaton learns to choose the optimal action (Narendra and
Thathachar, 1989) among its action set. Using responses provided by
the environment depends on the automaton’s selected action. In this
way, the automaton identifies the optimal action slowly. The imple-
mented method obtained through the environment’s answer to choose
the next action is determined by the learning algorithm. Every learning
automaton is composed of two main parts hat are seen in Fig. 3.

1. A random automaton has limited numbers of actions and is commu-
nicating with a random environment.

2. Learning algorithm through which the automaton identifies the opti-
mal action.

We can consider every Automaton as a finite machine, i.e.
SA = {𝛼, 𝛽, F,G, 𝜙}. In this equation,𝛼 is the set of automaton actions
among which the automaton chooses one in every iteration. 𝛽 is
entrance set which defines the automaton input. F and G map the cur-
rent state and input onto the next action that has been selected by the
automaton.
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4.1. Environment

Stochastic environment is shown in a mathematical way by
tree members of E set E = {𝛼, 𝛽, c} in which 𝛼 = {𝛼1, 𝛼2,…},
𝛽 = {𝛽1, 𝛽2,…}, and c = {c1, c2,…}. In this equation, 𝛼 is the envi-
ronment input set, while 𝛽 represents the set of environment output.
Different models have been defined for stochastic environments. The
relation between stochastic environment and stochastic automaton has
been shown in the following Fig. 3.

4.2. Learning algorithm

As it is shown in the figure above, we can describe a learning algo-
rithm as following.

p(n+ 1) = T[p(n), 𝛼(n), 𝛽(n)] (5)

In the equation above, if T is linear, the algorithm is also linear; oth-
erwise, it is nonlinear. We can say that the main idea of all learning
algorithms is as follows.

If automaton in N iteration chooses 𝛼i action and receives desired
answer for it form the environment, pi(n) probability related to that
action will increase, and probabilities of the other actions will decrease.
But, if it receives an undesirable answer, pi(n) will decrease, and prob-
abilities related to the other actions will increase. So, for a desired
answer fi and gj are non-negative functions and are called as reward
and penalty functions.

pj(n + 1) =
{

pj(n) + a(1− pj(n)) j = i
(1 − a)pj(n) ∀j, j ≠ i

(6)

For an undesirable answer:

pj(n + 1) =
⎧⎪⎨⎪⎩
(1 − b)pj(n) j = i

b
r − 1

+ (1 − b)pj(n) ∀j, j ≠ i
(7)

where a and b are reward and penalty parameters, respectively. In these
equations, r determines the number of action for each LA. In (Mostafaei
et al., 2015, 2017), some usages of learning automaton in the field of
wireless sensor networks are introduced.

5. Proposed protocol

The proposed location-based protocol of topology control through
the use of learning automaton has three phases: starting phase, learn-
ing phase, and select-best-action phase. In the first phase, each node
initializes its internal data structure by sending a suitable packet within
its transmission range and receiving the answer from the neighbors.
Forming the action-set of each node and updating the probability of
each action are carried out in learning phase. Finally, selecting the best
action by learning automaton of each node to determine the final trans-
mission range is performed in select-best-action phase. We explain each
of these phases in this section.

Each node in LBLATC algorithm has a data structure to store the fol-
lowing information. 1) At, a list of neighbors that are within Rt distance
from this node, 2) A1, a list of neighbors that are within R1 distance
from this node, and 3) K, a counter which counts the iteration of algo-
rithm. Algorithm 1 illustrates the pseudo code of our algorithm.

5.1. Starting phase

In this phase, every node with maximum transmission range (Rt)
sends a hello packet with its own information, including the identifica-
tion number and location. In this way, every node gets their neighbor’s
information. Every node, according to the received information from
the neighbors, calculates their distance to itself. Based on the calculated

distance, every node gets the number of neighbors around it. According
to the number of neighbors that is located in each node range, the node
determines the R1 range. Then, the nodes put their neighbors in At or A1
sets based on their distance to their neighboring nodes. Consequently,
it updates the corresponding values in its data structure.

Here, every sensor gets two allowed transmission ranges based on
the information they receive. One of the ranges is the maximum trans-
mission range, and the other one is the range that every sensor covers
0.6 (60%) of its neighbors. As best of our knowledge, none of the previ-
ous state-of-the-art methods considered the density of sensors in select-
ing a transmission range. This is the first attempt to involve the nodes
density to in selecting the proper nodes to maintain the backbone of the
network to transfer the information.

5.2. Learning phase

In learning phase, nodes choose their transmission range according
to the condition of their sets and the transmission range of the other
nodes. At the beginning, every sensor is equipped with the learning
automaton, and the number of actions in the automaton is equal to
two. The first action corresponds to selecting R1 and the second action
refer to Rt as the transmission range of each node. At the end of learning
phase, learning automaton of each node select its best action based on
the probability of it.

Learning automaton (LA) in each node chooses an action randomly,
and then sends a action packet with selected transmission range to its
neighbors. Every action packet contains the node id and its location
information. At the next phase, nodes make an effort to answer the
action packet according to the received action packet. The action
packet answer includes the range, id and neighbors listed.

At the last phase, every node examines whether the whole neighbor
is located in its selected range and if the neighbor list, which is received
from the neighbor, covers all the neighbors located in its maximum
range or not.

This information is leveraged as the reinforcement signal for our
algorithm. If the selected range covers the neighbors which are located
in the maximum range, the node will reward its selected range accord-
ing to Eq. (6); otherwise, the probability of selected action will be
updated by using Eq. (7). Our algorithm objective is to find maximum
range for each node to cover neighbors. The reason to apply this is that
the algorithm uses minimum number of nodes to obtain the network
information. Consequently, in our topology control solution the reward
function is used to help the nodes to find their best transmission ranges.

Note that when LA of nodes receive reward for the selected actions
this means that the environment response is 0 (i.e. 𝛽 = 0). In this state,
LA of each node uses eq. (6) to update its action probability vector
according to (Narendra and Thathachar, 1989). Otherwise, the envi-
ronment response is 1 (i.e 𝛽 = 1) and LA of each nodes uses Eq. (7) to
update the action probability vector.

5.3. Select-best-action phase

The action of choosing the range is repeated until one transmis-
sion probability exceeds the threshold limit or is repeated for 100 times
which is obtained empirically. Eventually, the range of every node that
has gained the most probability in learning phase becomes the final
range for data transmission. Indeed, the LA of each node in this case
selects its best action among action-set and based on the returned action
by LA of each node, it will select the proper range for steering informa-
tion. It worth stating that LBLATC algorithm leverages the LA of each
node to check the number of neighbors within its neighborhood. Using
a short transmission range without disconnecting from neighbors aims
at energy saving for LBLATC.

To prove the convergency of proposed protocol we can use the
same method in (Narendra and Thathachar, 1989). The basic theoreti-
cal question in the operation of a LA is the asymptotic behaviour of p(n)
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Algorithm 1 LBLATC Algorithm.

with respect to n. It refers to the convergence of a sequence of depen-
dent random variables. The performance of any LA based algorithm is
very sensitive to learning rate of the learning algorithm. Large value
for learning rate results in increasing convergency speed and decreas-
ing the accuracy of the algorithm. While small value for learning rate
results in increasing the accuracy and decreasing convergency speed of
the algorithm. The same convergency proof for LA of each node can be
found in (Misra et al., 2014).

5.4. A running example

In this section, we provide a running example for our proposed algo-
rithm in order to clarify its functionality in selecting the proper trans-
mission range for each node. Consider the network in Fig. 1. In this
figure, we have 11 sensor nodes. The LA of each node has two actions
which are called R1 and Rt. At the beginning of the algorithm, the prob-
ability of each action sets to 0.5. This means that the chance of choosing
each action by LA of each node is equal.

At the learning phase, each node randomly selects an action. Sup-
pose that node N11 chooses action R1. It sends an action packet to its
neighbors and waits for the response for it. Each neighbor follows the

same procedure to choose an action. This means that each neighbor
selects a random action among its action set and provides an answer to
that packet. If the neighbors with the chosen action are in the neighbor
list of this node the LA of this node updates its action probability vector
according to Eq. (6). This results an increment of the probability of this
action. This procedure continues until the stop condition meets. At the
end of learning phase, each node will select its best action. For instance,
in our example the probability of R1 is greater than that of Rt and this
results in selecting R1 as the final transmission range for node n11 in
our algorithm. Fig. 4 shows the flowchart of our algorithm.

6. Performance analysis

In this section, the performance of the proposed algorithm is com-
pared against RAA − 3L and RAAA− 2L (Blough et al., 2003), CLATC
(Abolhassani et al., 2009), and HOM (Stauffer and Aharony, 1994). We
chose these algorithms to compare with LBLATC as they have in com-
mon the network model.

During the simulation, nodes randomly have been distributed in an
area of 1000 × 1000 m. The numbers of nodes were 200, 300, 400,
500 and 600. Every node has two different transmission ranges: R1 and
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Fig. 4. Flowchart of the usage of learning automata in selecting the transmission range for each node.

Rt. Rt transmission range (in proportion to the network density) was
109 m (for 200 nodes), 86 m (for 300 nodes), 74 m (for 400 nodes), 67 m
(for 500 node), and 60 m (for 600 nodes). R1 transmission range was
distinguished according to the number of current neighbors. Reward
and penalty parameters were set at 0.15 and 0.3, respectively.

The authors of (Akhtar and Rehmani, 2015) provide a survey on
energy model for different applications of WSNs. However, we used
the energy model in (Heinzelman et al., 2002) as the reference energy
model for our simulations. The required energy for the sender or
receiver in this model is Eelec = 50nj∕bit and the sender amplifier needs
Eamp = 100pj∕bit∕m2. The required energy for transferring k bits data
packet from node A to node B is as follows.

ETx(k, d) = Eelec(k) + Eamp(k, d)

ETx(k, d) = Eelec ∗ k + Eamp ∗ k ∗ d2
(8)

where d is the distance between node A and node B. The required
energy for to receive k bits packet is computed as follows.

ERx(k, d) = Eelec(k)

ETx(k, d) = Eelec ∗ k
(9)

All simulations are performed in wireless sensor network simulator in
(Wireless Sensor Networks Simulator, 2017). Table 2 shows the simula-
tion parameters.

According to the network size, CLATC, RAA − 2L, and RAA − 3L
protocols, as well as HOM have been examined based on three crite-
ria: average transmission range, average node degree (node neighbors),
and average remaining energy. On average, the results were performed
under examination protocols for 100 different random configurations of
nodes. The results were averaged over these runs and the total number
of iteration for each action of learning automaton is 100.

Table 2
Simulation parameters.

Parameter Value

Network area 1000 × 1000
Number of nodes 200–600
Transmission range 60–109
Propagation Model TwoRayGround
MAC Protocol 802.15.4
reward parameter (a) 0.15
penalty parameter (b) 0.3

6.1. Performance of LBLATC

The purpose of this experiment is to gain the X parameter (i.e., trans-
mission range choice rate) for the proposed protocol. The Parameter
was chosen in a way that hid the minimum selected transmission range,
the minimum neighbor degree, and the maximum remaining energy.
As it’s evident from Fig. 5, when the parameter is 0.6, the proposed
protocol has the minimum selected transmission range, the minimum
neighbors, and the maximum selected transmission range. In the sim-
ulation performed to gain the best transmission range, choosing rate
shows that the transmission range diagram has the minimum transmis-
sion range when the network has 200 sensors with 109 m of density,
0.15 of reward rate, 0.3 of penalty rate, and 0.6 of range selection rate.

The average transmission range for sensors was proposed for our
protocol. In performed simulation, to gain the best transmission range
when the chosen range rate was high the network had 200 sensors with
109 m of density. In this case we set the reward rate to 0.15 and the
penalty rate to 0.3 because a low transmission range cause less conflict.

We investigate the effect of choosing the transmission range on net-
work density. Fig. 5a shows that choosing 0.6 as the transmission range
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Fig. 5. The performance of our algorithm. a) the average transmission range of sensor nodes. b) the average of remaining energy in network sensor. c) the average
of neighbor degree.

Fig. 6. Average transmission range of network nodes for LBLATC, CLATC,RAA-
3L, RAA-2L, and HOM protocols in different network sizes.

for each node has the best result in network density. Therefore, each
node requires to communicate with less number of nodes by choosing
0.6 of its transmission range. Fig. 5b depicts that choosing a low trans-
mission range for the sensor nodes results in having higher remaining
energy for the nodes. This fact has two reasons. First, the nodes with
lower transmission range consume less energy to communicate with
their neighbors. Second, choosing a low transmission range results in
having less number of neighbors. Fig. 5c illustrates that the average
number of neighbors for each node decreases by reducing the transmis-
sion range choice rate of each node. This is due to the fact that in such
scenarios the nodes leverage a short transmission range.

All in all, to save the energy of nodes in the network it is very impor-
tant that the sensors use suitable parameters. If we compare three fig-
ures (i.e. Fig. 5a, b, and c) with each other, it will become clear that
networks have their best performance when their range choice rate is
equal to 0.6. Therefore, we perform all simulations with 0.6 transmis-
sion range for each node from this point forward.

6.2. Average transmission range

The purpose of this experiment is to examine the average transmis-
sion range of network nodes for the protocols. In every node, the smaller
the selected transmission range is (while it’s connected to the network),
the less energy is consumed, and, according to the reduction of the
number of the neighbors, the conflict between nodes is also smaller.

In Fig. 6, the average transmission range of nodes for all protocols
is seen in different network sizes. As it is seen, LBLATC protocol has
less average transmission range than that of RAA − 2L, RAA − 3L, and

HOM. But, in CLATC protocol this amount is approximately equal to
that in LBLATC. Homogeneous (HOM) protocol has the maximum aver-
age transmission range, and for this reason, all nodes have Rt trans-
mission range. RAA − 3L protocol has a less average transmission range
than that of RAA − 2L protocol because, in RAA − 3L, every node can
choose its own transmission range among three transmission ranges,
but, in RAA − 2L protocol, every node can choose its own transmission
range between two transmission ranges.

6.3. Average number of neighbors

In this experiment, the average number of neighbors in network
nodes has been experimented for the protocols. The gathered results
from this experiment illustrated in Fig. 7 for the protocols under exam-
ination in different network sizes. As the number of neighbors has a
direct influence on intermingling of nodes, having a lower transmission
range has great impact, as it is evident, the proposed protocol has the
least average number of neighbors compared to the other protocols.
Therefore, the average number of neighbors is the most effective factor
in network capacity.

6.4. Average residual energy

The average remaining energy of each node has been examined for
all protocols. The results of this experiment are plotted in Fig. 8. It can
be seen from Fig. 8 that the average remaining energy of network nodes,
when determining the level of dissemination limit, is approximately

Fig. 7. Average range of neighbor degree of network nodes for LBLATC,
CLATC,RAA-3L, RAA-2L, and HOM protocols in different network sizes.
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Fig. 8. Remaining energy of network’s nodes for LBLATC, CLATC,RAA-3L, RAA-
2L, and HOM protocols in different network sizes.

about its initial energy (1 J). In other words, although the consumed
energy of LBLATC is more than that in CLATC, HOM, RAA − 2L and,
RAA− 3L protocols (because of learning level fulfillment in this proto-
col), this consumed energy is very small in comparison with the total
energy of each node (1 J). Our algorithm is an iterative algorithm which
chooses the suitable topology over iterations. However, the overhead
is negligible for long time network simulation. The remaining energy
increases when the number of nodes increases. This is due to the fact
that in dense networks there is a reduction in the transmission range
of each to save the energy. According to this metric, the proposed pro-
tocol can maintain a suitable topology for the network without using
much energy. It is worth stating that LBLATC maintains a suitable net-
work topology by assigning a proper transmission range to each node
and pruning the neighbor list. Leveraging a small number of neighbors
with less transmission range results in better energy saving than other
state-of-the-art works.

6.5. Network lifetime

In this section, we study network lifetime for various scenarios. First,
we report the impact of transmission choice rate on the overall lifetime
of the network for LBLATC protocol. Then, we report similar results for
a network with various nodes for all protocols.

Fig. 9. Impact of transmission choice rate on network lifetime.

Fig. 10. Network lifetime for LBLATC, CLATC,RAA-3L, RAA-2L, and HOM pro-
tocols by varying the number of nodes.

Fig. 9 illustrates network lifetime for the scenario that the network
has 200 nodes and the transmission choice rate varies between 0.9 and
0.4. The results report choosing the transmission range 0.6 gains much
lifetime than other values. This result can be summarized as follows.
Choosing 0.6 as transmission choice rate for each node in this scenario
decreases the number of active neighbors for each node. Therefore, the
nodes send less number of packets to neighbors which make the net-
work more energy efficient.

We also compare the obtained network lifetime from all protocols.
We perform this measurement based on the energy model in (Heinzel-
man et al., 2002) in which the data packet size is 100 bytes. We also
assume that the packet rate is 1 packet/second. Fig. 10 depicts the
LBLATC can gain more lifetime than other competitive algorithms. The
rationale behind these results is that LBLATC leverages a short transmis-
sion range in sending the packets to neighbors which results in energy
saving for nodes. Therefore, the obtained network lifetime by LBLATC
is higher than other protocols.

7. Conclusion

Wireless sensor networks are widely exploited for surveillance sys-
tems such as battle-field monitoring. One of the critical concerns in
such systems is to exploit the functionality of each node as long as pos-
sible. In this paper, a topology control protocol was proposed based
on the learning automaton. It should be taken into account that, in
the proposed protocol, the transmission range for every sensor is deter-
mined dynamically. In this protocol, nodes choose a suitable transmis-
sion range among their own transmission range with the aim of learning
automaton. Learning automaton makes the nodes choose the smallest
transmission range possible. Consequently, this choice has a determi-
nant impact on overall lifetime of the network. Simulation results vali-
date the performance of our proposed approach which has a better per-
formance than competing algorithms in selecting a suitable transmis-
sion range for each individual node in the network. Mobility (Bouaziz
and Rachedi, 2016) feature enables the nodes to move in the network
region. This feature can help the nodes to improve the energy efficiency
of the network. Developing an algorithm with mobility consideration
can be a future direction.
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