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ABSTRACT

Microservice architectures and service meshes have become highly
popular and face increasingly stringent scalability and dependabil-
ity requirements. To achieve low-latency service execution and
maximize performance, service providers of large-scale distributed
systems deploy microservices geographically closer to their users
in multi-cluster service mesh environments. However, inter-cluster
service dependencies introduce additional latency, and effective
load balancing across multiple replicas distributed across clusters
is crucial. Addressing this challenge, we present L3, an adaptive
latency-aware load-balancing mechanism for multi-cluster service
meshes. We conduct extensive simulations on Amazon EC2, and
our results of using the microservices of the DeathStarBench suite
for three clusters show that L3 reduces the 99th percentile latency
by 26% and 22% compared with round-robin and C3.
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1 INTRODUCTION

Service meshes are a particularly attractive part of microservice
architectures for addressing critical communication challenges,
including service location, secure connections, and communica-
tion failures of loosely coupled microservices in cloud applica-
tions [21, 35, 39]. They offer advanced features like rate limiting,
load balancing, and telemetry [53]. To realize and simplify ser-
vice implementations meeting the business or application require-
ments [33, 36, 40–44, 48, 50], service meshes were introduced as an
infrastructure layer abstraction to proxy network traffic and handle
the connectivity challenges in microservice architectures [32]. This
abstraction allows developers to focus on writing business logic
rather than getting involved in infrastructure-related complexities.
Service meshes also empower developers to manage and monitor
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their microservices easily and add new security, observability, and
traffic management features to their applications without signifi-
cant changes to their code [53]. In contrast, container orchestration
tools, such as Kubernetes [23], prioritize orchestrating compute
units without offering additional functionalities.

As network applications evolve, there are often growing require-
ments to deploy them across multiple clusters, occasionally even
across geographically distributed locations. This shift may origi-
nate from diverse considerations, including privacy, governance
constraints, or the desire to enhance application availability and
reliability by separating failure domains. While existing service
mesh implementations like Linkerd [10] and Istio [17], alongside
related research endeavors [40, 44, 48], have effectively optimized
service execution latency within individual clusters, they often lack
comprehensive solutions for service meshes extending across mul-
tiple clusters. For instance, Istio’s clusterLocal approach [26] lacks
dynamic feedback-based load balancing distribution adjustment.

Despite the availability of geolocation- and latency-based load
balancing services from major cloud providers like AWS [28],
Azure [29], and GCP [31], these solutions exhibit significant draw-
backs. They typically rely on a Domain Name System (DNS)-based
approach considering the incoming source IP and pre-existing la-
tency measurements from associated IP address ranges to direct
clients to presumed low-latency servers within their datacenter
network. However, in microservice environments, where TCP con-
nections can be long-lived, clients may continue sending HTTP
requests over these connections regardless of whether the initially
selected server remains the optimal choice. To address this issue,
integrating a latency-aware layer into the service mesh architecture
enables more granular Layer 7 load balancing.

While multi-cluster deployments of service mesh clusters can
significantly reduce user-facing latency by content caching and
content localization, they introduce several challenges. For instance,
traffic among various service instances may traverse the wide-area
network (WAN), and latency optimization becomes complex due to
dependencies between services residing in different clusters [46].
This inter-cluster dependency introduces additional latency to the
execution of services.

When multiple replicas of a microservice exist, load balancing
is crucial in ensuring efficient resource utilization and optimal ser-
vice performance. Selecting replicas, however, is challenging as
the latency is difficult to predict and can vary. In particular, the
geographically closest replica may often not be the one providing
the best latency. We can identify three main reasons, all affecting la-
tency and its variability: First, oftenWAN links are characterized by
varying latency over time [38], which makes the system more chal-
lenging to optimize for latency. Second, the routing paths among
the different clusters of the service mesh can change every couple
of seconds [45], further increasing latency variability. Finally, the
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combination of executing different services in microservice archi-
tectures can contribute to additional latency. For example, a slow
database service can negatively add latency to the execution time.
The latency penalty from a slow database can often be an order of
magnitude higher than the network delay induced by geographical
distribution. Therefore, balancing the load of service replicas is
crucial and has a determinant role in reducing tail latency.

This paper explores latency-aware load balancing for services
replicated in multiple clusters within a distributed service mesh. We
introduce L3, a dynamic multi-cluster load balancer designed for
Linkerd [16], a widely adopted service mesh. L3 adjusts traffic be-
tween multi-cluster service replicas (referred to as backends) based
on data plane metrics such as latency, success rate, and requests per
second (RPS). By prioritizing replicas with lower latency, guided by
latency distribution metrics, L3 effectively reduces overall latency
in the service mesh. Additionally, we use the success rate metric to
guide traffic away from replicas with lower availability. We also in-
troduce a rate control algorithm to distribute traffic evenly across all
replicas during significant load increases. Leveraging exponentially
weighted moving averages (EWMA) and PeakEWMA, L3 filters
request metrics and assigns weights to service replicas across vari-
ous clusters. We implement L3 using the standard interface within
Linkerd, which can be easily adapted to other service mesh imple-
mentations, such as Istio. We present the results of an empirical
evaluation of L3 on Kubernetes clusters deployed on AWS, utiliz-
ing the DeathStarBench suite [37] and report up to 26% and 22%
reduction in tail latency compared with round-robin and C3 [49].

The remainder of this paper is organized as follows. We intro-
duce the challenges of offering microservices in §2. The design of
L3 is presented in §3. In §4, we explain the proof-of-concept imple-
mentation of L3 and its challenges. §5 reports on the performance
of our evaluation under different scenarios. After putting our work
into perspective with existing works in §6, we conclude in §7.

2 CHALLENGES OF SERVICE SELECTION

This section discusses challenges in offering microservices in ge-
ographically distributed systems. We first discuss issues related
to the variation of latency and service demand when running a
service in geo-distributed settings. Then, we underline the need for
latency-aware load balancing in a multi-cluster service mesh and
to perform clever service selection.

We further provide empirical evidence in the form of traffic
captures of microservices from TIER Mobility’s [18] production en-
vironment with over 200 microservices. The traffic captures consist
of a randomly selected 10-minute period of a service deployed in
several clusters, namely, cluster-1, cluster-2, and cluster-3.

2.1 Latency Variation

Service meshes typically permit interconnecting multiple sites,
allowing for multi-cluster deployments in geographically dis-
tributed locations. The links connecting multiple locations can
have transcontinental delays, and even the latency can vary over
time [45]. Multi-tier microservices often have complex chains of
dependencies on databases, caches, and other microservices, which
can significantly influence the resulting latency [47]. Herein, the
latency is the aggregation of both the WAN link latency and the
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(a) Latency variations in scenario-1
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(b) Latency variations in scenario-2

Figure 1: Scenario-1 has a median latency of around 50ms,
with some spikes for cluster-2 up to 300ms. The 99th per-

centile latency is around 100ms to 750ms, with a very stable

RPS of around 300 RPS. Scenario-2 has a low 50th percentile

latency with a 99th percentile latency around 10ms to 100ms,
with some intermittent spikes up to over 2000ms and fluctu-

ating RPS between 50 and 200.

service execution time on the servers of a cluster. In such scenarios,
even infrequent drops in performance affect a significant proportion
of all requests in large-scale distributed systems [34]. Furthermore,
a slow microservice or a service that is on a critical path, i.e., a
path with the longest chains of services— can degrade the overall
performance of the system [52].

Our paper is motivated by the observation that instead of elimi-
nating all sources of latency variability in large-scale distributed
systems, it is more practical to use a latency-tolerant approach
resilient to slow microservices. This can be achieved by steering
traffic away frommicroservice replicas that experience performance
degradation to replicas that perform well.

Figure 1 shows two scenarios from our traffic captures, namely,
scenario-1 and scenario-2, with the respective median and 99th
percentile latency over a 10 minute period. We can observe that
our services can experience tail latency that deviates considerably
from the median latency. The median latency of scenario-1, for
example, varies from 50 to 100ms most of the time (see Figure 1a),
with some intermittent peaks up to 350ms for the service replicas in
cluster-2. For the service of scenario-2 shown in Figure 1b, this
variation is much lower, with around 3 to 9ms. In both scenarios,
the 99th percentile latencies of the services experience very high
fluctuation– from 100 to 950ms in Figure 1a and from 10 to 2400ms
in Figure 1b.
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Figure 2: The RPS variation of scenario-1 and scenario-2.
RPSs slightly vary in scenario-1 while this fluctuation is

between 50 and 200 in scenario-2.

Given such a variance, solutions should dynamically adapt to
latency variations in the geographically distributed environment
to improve the system’s overall performance. We investigate how
load balancing can reduce the tail latency of service execution in a
multi-cluster environment by exploiting insights from the latency
of service execution.

2.2 Service Demand Variation

The number of services of a geographically distributed service mesh
invoked by a service request propagating through the system can
vary for several reasons. For example, the number of active users
or their behavioral patterns. Therefore, it is crucial that the system
can adapt gracefully to the demand variation without hindering
performance, such as tail latency [47].

We now provide more insights from the service demand vari-
ation of our scenarios mentioned previously in Figure 2. We can
observe that RPS slightly varies over time for scenario-1 in Fig-
ure 2a. However, Figure 2b shows the service demand variation of
scenario-2 in which the number of RPS varies from 45 to 200 re-
quests. We observe a high RPS variation in many time intervals, for
example, between minutes 2 and 3. Therefore, designing an adap-
tive solution for an environment with such a dynamically changing
number of RPS remains challenging.

3 L3 DESIGN

L3 is an adaptive load-balancing system designed to minimize the
latency of microservices in a geographically distributed service
mesh. Our design relies on the various traffic metrics offered by the
data plane proxies, such as from Linkerd [14] and Istio [17]. These
proxies provide a rich set of transport and application-layer metrics,
such as the latency distribution of traffic destined for a specific
service replica or the number of unsuccessful HTTP responses. We
aim to leverage these metrics for the service selection in a service
mesh to minimize latency. L3 directs the requests to the fastest
replicas of a multi-cluster deployment. At the core of L3, there are
three key components:

• Metrics collector: gathers the transport and application
layer metrics when the traffic crosses the proxies and feeds
them to the weight assigner component.
• Weight assigner: leverages the performance metrics, i.e.,
latency, RPS, and success rate, to assign a weight to each
service replica.

Cluster 2

Cluster 3

Cluster 1

L3
Weight
assigner

Adjust
weights

Rate
controller

Metrics

Metrics
collector

ProxyOutgoing requestClient Proxy

Proxy

Server

Server

Figure 3: A possible architecture of L3 with three geographi-

cally distributed clusters over a WAN. Each cluster provides

its performance metrics using a service mesh proxy.

• Rate controller: adjusts the weights given to each service
replica to handle high RPS changes without overloading a
specific one.

Figure 3 depicts a simplified version of an L3 architecture with
three clusters by putting the key components inside cluster 1. The
clusters are interconnected through the service mesh, with the
data plane consisting of many micro-proxies which are co-located
with the microservice replicas and share the same kernel network
namespace [25]. These proxies are injected into the network path
and handle all TCP traffic transparently for the microservice. We
note that in production deployments, L3 would most likely run on
all clusters, and clients residing on different clusters do not transfer
traffic to a central place for processing.

A set of clients in cluster 1 of Figure 3 generates requests for
the microservice located in cluster 2 and cluster 3. The outgoing
requests pass through their corresponding proxy in cluster 1, where
they are forwarded to cluster 2 or cluster 3 depending on the weight
distribution determined by L3. L3 collects the application layer met-
rics from the proxies and uses them to balance the cluster load, aim-
ing to minimize tail latency. We provide the detailed integration of
metrics collector in § 4. We now explain the weight assigner
and rate controller components of L3 in detail.

3.1 Weighting Algorithm

With the weight assigner component, L3 assigns weights to
the backends according to a scoring function by evaluating the
collected performance metrics and converting them into weights.
L3 leverages these weights to direct the requests to the backends
that serve requests fast. These weights are then passed to the rate
controller to determine the final weights by which the traffic is
proportionally forwarded to the backends to optimize latency.

To reduce the tail latency, L3 considers the parameters that can
affect the execution of requests, including the success rate, latency,
RPS, and the number of in-flight requests of a backend. We now
explain the role of each parameter of the weight assigner.

Accounting for the success rate. The success rate of a backend
is the ratio of successful requests compared to failed requests and
plays a critical role in load balancing for two reasons. First, it is
generally preferred to forward a request to a backend that is more
likely to process it successfully. Second, even a failed request can
increase the tail latency in microservice architectures [34]. Thus,
higher failure rates are penalized so that L3 can prioritize steering
requests to healthier backends.
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Symbol Description
𝜆 Default latency
𝛽 Decay coefficient
𝐸now Current EWMA value
𝐸prev Previous EWMA value
𝑃now Current PeakEWMA value
𝑃prev Previous PeakEWMA value
𝑌now Latest sample value
𝑅s Success rate of a backend
𝑅i Normalized number of in-flight requests
𝐿s Latency of successful requests
𝐿est Estimated latency
𝑃 Penalty factor
𝑐 Relative change
𝑤b Weight of backend b
𝑤𝜇 Average weight of all backends

Table 1: List of Symbols

Accounting for the latency. The latency of successful requests is
an important metric to consider when performing latency-aware
load balancing, as it directly correlates with the user experience.
To reduce the noise, L3 filters the request latency metrics with
an EWMA. The latency of failed requests needs to be considered
differently, as failed requests can often cause further problems for
other services that were invoked as part of the request. Including
the failure latency together with the success latency might result
in misleading results.

Moving averages to filter metrics. L3 relies on metrics such as
the request latency, RPS, and success rate. The metrics are filtered
with EWMA and peak EWMAs to smooth out fluctuations in the
sample data. Table 1 summarizes the symbols used in designing L3.

EWMA. The EWMA filter gives less weight to older samples by
exponentially averaging the latest sample with all previous samples.
We use EWMAs as a filter for the metric samples as shown in
Equation 1, where 𝑡prev is the timestamp of the previous sample
and 𝑡now is the timestamp of the current sample. We define Δt as
the difference between 𝑡now and 𝑡prev. 𝛽 is the decay coefficient and
represents the degree of weight decrement of the moving average.

𝐸now =

{
𝜆, if 𝐸prev = ∅

𝑌now × (1 − 𝑒 (
−(Δt)
𝛽
) ) + 𝐸prev × 𝑒 (

−(Δt)
𝛽
)
, otherwise

(1)

L3 maintains EWMAs of metrics such as the latency or the suc-
cess rate for each replica of a service.

PeakEWMA. The PeakEWMA filter is an extension to the previ-
ously mentioned EWMA filter and originates from Finagle [13], a
remote procedure call system by Twitter. PeakEWMA is designed to
react quickly to sample spikes and recover cautiously. PeakEWMA
can be used in place of EWMA within the algorithms, as its sensi-
tivity can be helpful if a special focus is to be placed on worst-case
samples.

Equation 2 shows how L3 computes PeakEWMA. If a new sample
value is larger than the PeakEWMA value, the PeakEWMA value

Algorithm 1:Weighting Algorithm
input :Array of backends 𝐵, EWMA for success latency,

success rate, RPS, and in-flight requests for each
backend

output :weight𝑤𝑏 for each backend 𝑏 ∈ 𝐵 to propagate to
the service mesh

1 𝑃 ← a latency penalty factor for failed requests
2 foreach 𝑏 ∈ 𝐵 do

3 𝐿𝑠 ← 𝑏.EWMAP99
4 𝑅𝑠 ← 𝑏.EWMASuccessRate()
5 𝑅𝑟𝑝𝑠 ← 𝑏.EWMARequestsPerSecond()
6 𝑅𝑖 ← 0
7 if 𝑅𝑟𝑝𝑠 ≠ 0 then
8 𝑅𝑖 ← 𝑏.EWMAInflightRequests()

𝑅𝑟𝑝𝑠

9 end

10 if 𝑅𝑠 = 0 then
11 𝐿𝑒𝑠𝑡 ← 𝐿𝑠 /* Prevent division by zero */

12 else

/* 1
𝑅𝑠

is the expected value for the number

of tries until receiving a successful
response. */

13 𝐿𝑒𝑠𝑡 ← 𝐿𝑠 + 𝑃 × ( 1𝑅𝑠 − 1)
14 end

15 𝑤𝑏 ← 1
(𝑅𝑖+1)2×𝐿𝑒𝑠𝑡

16 if 𝑤𝑏 < 1 then
17 𝑤𝑏 ← 1
18 end

19 end

is reset to the new sample value. Otherwise, the new sample value
is incorporated similarly to Equation 1.

𝑃now =


𝜆, if 𝑃prev = ∅
𝑌now, if 𝑌now > 𝑃prev

𝑌now × (1 − 𝑒 (
−(Δt)
𝛽
) ) + 𝑃prev × 𝑒 (

−(Δt)
𝛽
)
, otherwise

(2)

Weighting. Algorithm 1 shows how L3 assigns a weight for each
backend 𝑏 ∈ 𝐵. We consider a backend 𝑏 and propose to use its
99th percentile latency to represent the tail latency of the latency
distribution. As the latency of network communication can often
be characterized by a log-normal distribution, we found the 99th
percentile latency to be a good indicator representing outliers or
extremely high latency values. To meet different requirements, L3
can be configured to utilize other percentiles, such as the 98th or
the 99.9th percentile, as necessary.
We take the EWMA of the backend’s 99th percentile latency for
successful requests and assign it to 𝐿𝑠 .

To estimate the latency of a microservice, we take the EWMA
value of the backends success rate 𝑅𝑠 , the RPS 𝑅𝑟𝑝𝑠 , and the num-
ber of in-flight requests divided by 𝑅𝑟𝑝𝑠 to receive the normalized
number of in-flight requests 𝑅𝑖 . In-flight requests are those that are
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still in transit and for which a response has yet to be received. Then,
we calculate the estimated latency 𝐿𝑒𝑠𝑡 using a method proposed
by Spotify [1] as follows.

𝐿𝑒𝑠𝑡 = 𝐿𝑠 + 𝑃 × (
1
𝑅𝑠
− 1), (3)

where 𝐿𝑠 is the 99th percentile latency latency of successful
requests. The constant penalty factor, denoted as P, serves as a
parameter to represent the impact a failed request has on the client.
To accurately capture this impact, P should be set to a value cor-
responding to the round-trip time of failed requests, as perceived
from the client’s perspective. The round-trip time describes the
duration until the client becomes aware of the failure and can is-
sue a retry. Then, P can be multiplied by the expected value 1

𝑅𝑠
of

the geometrically distributed number of requests a client has to
send until a successful response is received. These two terms are
then added together to obtain a latency estimate depending on the
success rate.

We calculate 𝑤𝑏 in Equation 4 as the weight for each backend
based on the estimated latency 𝐿𝑒𝑠𝑡 and the normalized value for the
number of in-flight requests 𝑅𝑖 . As the weight should get smaller for
increasing latency, we chose the reciprocal function 1

𝑥 as a basis to
model this inverse relationship. In the denominator, 𝑅𝑖 is multiplied
with 𝐿𝑒𝑠𝑡 to encompass both the signal from in-flight requests and
feedback from already completed requests. To account for cases
without in-flight requests, 𝑅𝑖 is incremented by one, resulting in
𝑅𝑖 + 1. As in-flight or queued requests mostly influence the tail
latency [34], 𝑅𝑖 + 1 is squared to increase its significance. We used
squaring, which presents a good trade-off between swiftly diverting
traffic away from backends experiencing increasing latency and
ensuring stability without causing excessive fluctuation.

𝑤𝑏 =
1

(𝑅𝑖 + 1)2 × 𝐿𝑒𝑠𝑡
(4)

If L3 assigns a low weight to a backend, we run into the risk that
the backend will not receive any traffic. This situation can result
in information about the backend’s performance being lost, as the
system cannot collect metrics. To prevent this situation, we assign a
weight to that backend that is high enough to direct enough traffic
to the backend for the metric collection. A backend replica that
becomes unable to serve traffic in a reasonable time frame, e.g.,
by being severely CPU throttled, should be handled on a different
system layer. One approach is to use periodic health checks within
the container orchestrator, which can temporarily take the replica
out of the load balancing rotation until the service quality has
sufficiently recovered.

3.2 Rate Control Algorithm

The weight assigner component of L3 prefers backends that can
serve requests fast. However, when the number of requests sig-
nificantly increases, it cannot ensure that the combined requests
from all the clusters remain within the capacity of the fastest back-
ends. Exceeding the capacity of the backends will result in poor
performance and increase the tail latency [34]. Thus, we introduce
the rate control component to address such situations to avoid
directing a majority of the requests to a small number of backends.

Algorithm 2: Rate Control
input :Set of weights𝑤𝑏 ∈𝑊 for each backend 𝑏, EWMA

of total RPS across all backend RPS𝐸𝑊𝑀𝐴 , and the
last RPS sample RPS𝑙𝑎𝑠𝑡

output :Set of Weights𝑊 to propagate to the service mesh
1 𝑐 ←relativeChange(RPS𝐸𝑊𝑀𝐴 , RPS𝑙𝑎𝑠𝑡 ) /* Relative

change from EWMA to the latest sample value */

2 𝑤𝜇 ←𝑊 .averageWeight()
3 foreach𝑤𝑏 ∈𝑊 do

4 if 𝑐 > 0 then
5 𝑤𝑏 ← 𝑤𝜇 −

𝑤𝜇

(1+𝑐2 )
3
2
+ 𝑤𝑏

(1+𝑐2 )
3
2

6 else

7 if 𝑤𝑏 ≤ 𝑤𝜇 then

8 𝑤𝑏 ← 𝑤𝑏

(1+2𝑐2 )
3
2

9 else

10 𝑤𝑏 ← 2𝑤𝑏 −𝑤𝜇 −
𝑤𝑏−𝑤𝜇

(1+3𝑐2 )
3
2

11 end

12 end

13 if 𝑤𝑏 < 1 then
14 𝑤𝑏 ← 1
15 end

16 end

L3 needs to adjust the traffic distribution resulting from the
latency-based weight assigner to account for RPS fluctuations
for two different scenarios with 1) increasing number of RPS and 2)
decreasing number of RPSs. We now explain the reaction of L3 for
each scenario.

To deal with an increase in RPS, L3 rate controller effectively
distributes the incoming requests among multiple backends within
a short time frame to prevent overwhelming any individual back-
end. This distribution strategy enables the cluster’s autoscaling
mechanisms to promptly scale up the faster backends in response.
Once the autoscaling mechanisms have adjusted, the traffic share
to the fastest backends can be increased again.

A decrease in RPS frees up backend capacity, allowing them to
serve more requests. This situation enables L3’s rate controller
to shift proportionally more traffic to the faster backends oppor-
tunistically. Autoscaling mechanisms then have the chance to scale
down the slower backends to increase resource efficiency.

When the RPS remains unchanged, the traffic distribution re-
mains untouched by the rate controller.

Rate control. Algorithm 2 shows the pseudocode of the rating
component of L3. We use 𝑊 as the set of weights 𝑤𝑏 of each
backend, 𝑅𝑃𝑆𝐸𝑊𝑀𝐴 as the EWMA value of the total RPS across
all backends, and 𝑅𝑃𝑆𝑙𝑎𝑠𝑡 as the latest sample of RPS across all
backends.

The algorithm initially determines the relative change 𝑐 between
𝑅𝑃𝑆𝐸𝑊𝑀𝐴 and 𝑅𝑃𝑆𝑙𝑎𝑠𝑡 . The relative change 𝑐 indicates how much
the RPS has increased or decreased in a recent time window, as
𝑅𝑃𝑆𝐸𝑊𝑀𝐴 suffers a time lag before it reflects a change in trend.
Then, we iterate over each weight𝑤𝑏 and modify it depending on
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Figure 4: Weight adjustments made by the rate control al-

gorithm of L3 for different situations (a) 𝑤𝑏 > 𝑤𝜇 and (b)

𝑤𝑏 < 𝑤𝜇 .

whether: 1) the RPS has increased or decreased and 2)𝑤𝑏 is above or
below the average weight of all backends𝑤𝜇 . If the relative change
𝑐 of the RPS is greater than 0 and the traffic has thus increased, the
traffic has to be distributed more evenly across all backends. Thus,
Equation 5 converges towards the average weight 𝑤𝜇 for larger
positive relative changes 𝑐 . The adjustment becomes smaller when
𝑤𝑏 trends towards 0.

𝑤 (𝑐) = 𝑤𝜇 −
𝑤𝜇(

1 + 𝑐2
) 3
2
+ 𝑤𝑏(

1 + 𝑐2
) 3
2

(5)

Considering the case where the RPS decreases, and 𝑐 is less than 0,
𝑤𝑏 is decreased if it is less than𝑤𝜇 and increased otherwise.

Figure 4a shows the weight adjustment for a backend weight
𝑤𝑏 = 2000 and an average weight𝑤𝜇 = 1000. If the RPS decreases,
the relative change 𝑐 is below 0, then the weight increases oppor-
tunistically. For example, if the RPS is halved and therefore 𝑐 = −0.5,
the weight increases from 2000 to over 2800. The weight𝑤𝑏 is ad-
justed asymptotically towards𝑤𝜇 for positive relative changes.

Figure 4b shows the weight adjustment as a function of relative
change 𝑐 for 𝑤𝑏 = 500 and 𝑤𝜇 = 1000. As 𝑤𝑏 < 𝑤𝜇 applies, 𝑤𝑏 is
decreased for negative 𝑐 and increased asymptotically towards𝑤𝜇

for positive 𝑐 .
Similar to algorithm 1, if 𝑤𝑏 is under the threshold where the
backend will continue receiving traffic, a higher weight is assigned
to ensure continuous metric collection.

4 PROOF OF CONCEPT

We implement L3 as a microservice in 1800 lines of Go code, in-
cluding tests. 1 It is built to run as a containerized workload in a
Kubernetes cluster, managing user-defined objects declaring desired
latency optimizations. L3 can be deployed with multiple replicas
in a high-availability mode. Only a single replica acts as the leader
and changes weights through a lease-based locking leader election
mechanism. Information about the internal state of the controller
and algorithm is exposed through Prometheus or OpenTelemetry
metrics, respectively. Metrics can be collected with various open-
source observability tools such as Prometheus, enabling human
operators and other systems to infer the internal state at any point
in time.

Figure 5 shows the integrated architecture of L3 with the Link-
erd service mesh deployed on top of Kubernetes. The reference
1The source code is available at https://github.com/oliviermichaelis/l3
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implementation of L3 follows the Kubernetes operator design pat-
tern [3], which extends Kubernetes by providing custom dynamic
management capabilities. L3 leverages the controller pattern [8]
to implement control loops that continuously monitor the state of
TrafficSplits and carry out changes as necessary.

TrafficSplits are part of the Service Mesh Interface standard [20]
and allow users to define the traffic distribution between multiple
target services in which each target service is called backend. The
weight ratios between the weights of the backends define the dis-
tribution of traffic: a backend with twice the weight receives twice
as much traffic. Weights can be any non-negative integer number.
The role of TrafficSplits in L3 is to steer arbitrary portions of traffic
destined for a Kubernetes service from one cluster to another. By
building on top of the Service Mesh Interface, L3 can be used with
Linkerd and easily adapted to other service meshes supporting the
standard, such as Istio or Kuma [24]

We use one control loop to monitor the state of the TrafficSplits
and handle the addition and removal of TrafficSplits and their target
services. Another control loop fetches data plane metrics of the
TrafficSplits every 5 seconds and updates the operator-internal
state, such as EWMAs, with the latest metric samples. We apply
the algorithms in §3 to update the weights of the TrafficSplits.

Metric collection. We collect the data plane metrics with
Prometheus [22], a time series database, and L3 ‘s implementation
leverages these metrics for balancing the load. The Prometheus
instance shown in Figure 5 periodically scrapes data plane met-
rics from all Linkerd proxies, by default every 5 seconds. Linkerd’s
metrics are represented with monotonically increasing counters,
for example, with a counter for the total number of requests ob-
served [14]. To convert these metrics into rate metrics like RPS or
success rate, we need to calculate the per-second average of the
metrics by calculating the rate of increase of the counters between
two points in time. As we need to ensure that the period between

https://github.com/oliviermichaelis/l3
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these two points in time contains at least two time-series samples
with a scrape interval of 5 seconds, we used a time window of 10
seconds.

The timing choice for collecting the telemetry information from
Prometheus results in some limitations regarding the data freshness.
The per-second averaged metrics are based on extrapolated data
from a 5 seconds period, which could be a problem for especially
spiky workloads where it is necessary to react more quickly. It
is possible to reduce the scrape interval of Prometheus and thus
also the time window for L3’s queries, resulting in a measurable
improvement. However, that also increases the load on Prometheus,
especially in large clusters with tens of thousands of Linkerd prox-
ies.

As shown in Figure 5, L3 queries Prometheus every 5 seconds for
aggregated metrics of the TrafficSplit, more precisely: RPS, success
rate, and latency, and adds them to the internal EWMAs, among
others. The 5-second choice balances data freshness without over-
loading both Prometheus and Linkerd at a larger scale. Linkerd
needs to push a new configuration to the affected sidecar prox-
ies whenever the weights of the TrafficSplit are updated, so too
frequent updates should be avoided at a larger scale.

EWMA default values.When initializing EWMAs, we assign a
default value for each performance metric: 5 seconds for latency-
related EWMAs, 100% for success rate EWMAs, and 0 for RPS-
related EWMAs. We choose the initial values to prevent a new
target service from overloading before establishing a meaningful
baseline. Whenever L3 cannot retrieve metrics for a TrafficSplit —
which happens after at least 10 seconds without any traffic — it
starts converging toward the initial value of the EWMAs in small
increments until new samples come in or the initial state is reached.

The decay coefficient 𝛽 is configured such that the EWMAs have
a half-life of 5 seconds for latency EWMAs and number of in-flight
request EWMAs, and a half-life of 10 seconds for success rate and
RPS EWMAs.

Resource usage. The L3 microservice itself is quite resource-
efficient. It utilized less than 1.5% of a vCPU core during our bench-
marks and maintained memory usage below 32MB. The Linkerd
data plane proxies exhibit modest resource requirements, typically
consuming memory in the low double-digit megabyte range and
utilizing only a small percentage of the available CPU time of a
vCPU core. An in-depth benchmark study [30] indicates that the
proxy introduces latency increases of approximately 6𝑚𝑠 for the
median and 50𝑚𝑠 for the 99th percentile at a rate of 2000 RPS. It is
important to approach these figures cautiously, recognizing that
they offer a rough estimate of resource consumption magnitude.
Exact values depend on various factors, including the underlying
hardware capabilities, software versions, and the requests per sec-
ond (RPS). The Prometheus instance used approximately 0.5 GB
of memory and up to 30% of a vCPU core. The scalability of this
Prometheus setup could become a bottleneck in clusters with tens
or hundreds of thousands of Linkerd proxies, especially paired with
low scrape intervals. A sharded Prometheus setup with low data
retention might be more suitable for such use cases. However, this
choice was unnecessary for our scenarios.

5 EVALUATION

This section first explains the setup of our test environments and
introduces our implementation of C3 [49] as one of the state-of-the-
art solutions for comparison. Then, we perform some validation
and robustness tests before evaluating the performance impact.
In particular, we examine the influence of L3 on the latency and
success rate.

5.1 Test Environment

To measure the performance of our implementation, we built a
geo-distributed system on public cloud infrastructure services from
Amazon Web Services (AWS). The test environment consists of
three Kubernetes clusters with cross-cluster communication en-
abled through a multi-cluster installation of the Linkerd service
mesh. AWS Elastic Kubernetes Service [6] was used for the Kuber-
netes control plane, while the worker nodes were provisioned on
AWS EC2 [5] m6.xlarge instances with 4 vCPU, 16GB of memory
and up to 12.5 Gbps network speed.

The geo-distributed locations of the clusters were chosen so
that the network delay between the clusters is as equal as possible
and generally relatively low. Thus, a heavy bias towards a single
location can be avoided and ensures that the network delay doesn’t
overpower the variability of the service latency. Choosing locations
with a large network delay, e.g. from different continents, would
most likely imply a heavy bias for the local cluster. In such a sit-
uation, a circuit-breaker-based failover mechanism triggered by
outlier detection could be more suitable.

Cluster-1 was provisioned in the eu-central-1 (Frankfurt)
region, while cluster-2 and cluster-3were in eu-west-3 (Paris),
and eu-south-1 (Milan), respectively. The network delay from
cluster-1 to both cluster-2 and cluster-3 is approximately
10𝑚𝑠 .

Comparison algorithms. We compare the performance of L3
with the round-robin load balancing of Linkerd and C3 [49] as the
state-of-the-art. Minor changes to the C3 algorithm had to be made
to make it suitable for service meshes. In the following, we name
noteworthy differences between the original C3 implementation
and our adaptation. C3 takes load-balancing decisions at the level of
individual requests, whereas L3 changes the aggregated traffic dis-
tribution of all requests within multiple clusters. We use aggregated
metrics instead of per-request metrics to reduce the implementation
effort of adapting C3 to our test environment. In scenarios where
the success rate is suboptimal, L3 accounts for possibly necessary
retry attempts and incorporates them into its weighting mechanism.
While accounting for failed requests is critical in the context of
HTTP requests, it is less relevant in C3’s context of data stores.
Since C3 lacks success rate optimizations, our adaptation of it simi-
larly does not support it, which is relevant for the comparison with
L3 in §5.3.2.

One further difference is C3’s congestion-control-inspired back-
pressure mechanism. This mechanism allows clients to retain re-
quests in a backlog queue in case a server’s rate limit has been
exceeded. Requests are kept in the queue until a server has regained
the capacity to handle them. Due to the dynamic and heterogeneous
nature of cloud server hardware, and the inherent uncertainty about
the capabilities of their underlying hosts, most microservices lack
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Figure 6: The 99th percentile latency of running requests on remaining three different clusters, i.e., scenario-3, scenario-4, and
scenario-5, of our production environment.

self-awareness of their capacity. This inability to consider the ca-
pacity of servers is also reflected in service meshes and, therefore,
also in L3.

DeathStarBench. To measure the impact of L3 on the tail la-
tency and compare it to other load balancing strategies such as
round-robin and C3, we ran extensive benchmarks with the hotel-
reservation application of the DeathStarBench [37] suite. This ap-
plication consists of eight microservices and corresponding caches
and databases, which offer users the functionality to reserve hotels.
We deployed the entire application on each Kubernetes cluster, with
a constant-throughput HTTP benchmarking client [27] deployed
in one of the clusters. The benchmarking client then sends HTTP
requests to the cluster-local frontend microservice to simulate mul-
tiple users logging in, reserving, and booking hotels. Outgoing
requests from any of the microservices to other microservices are
then distributed within all clusters according to the load balancing
algorithm.

Given that the microservices were not initially designed with
geo-distribution in mind and rely on stateful databases, distributing
traffic across different clusters may not consistently yield correct re-
sponses. Despite these challenges, the system architecture remains
valuable for assessing latency.

TIER Mobility. In contrast to the test environment of the hotel-
reservation application, we need an environment to test scenarios
such as with decreased success rates or vastly different latency vari-
ations. We choose five scenarios based on randomly selected time
periods of 10 minutes of real-world latency and success rate data
taken from more than 200 microservices from TIER Mobility’s [18]
production environment. Our scenarios involve requests exchanged
between microservices, deliberately chosen to encompass a broad
diversity of latency and request volume patterns. To measure re-
quest latency and construct test scenarios, we gathered latency
traces generated via distributed tracing. We recognized that these
traces encompass network delay, which could potentially skew re-
sults in our test environment due to existing topology-dependent
network delay, so we excluded network delay spans from the traces.
As a result, we focus solely on extracting service execution latency
data. Nevertheless, we present representative results of L3 for the
selected scenarios. Figure 6 reports the 99th percentile latency of
our traces for scenario-3, scenario-4, and scenario-5. As the microser-
vices from which the production data was taken have very high

availability and no significant failure rate except during outages, we
created scenarios failure-1 and failure-2 by injecting artificial
failure into the previously mentioned scenarios.

For the benchmark, a benchmark coordinator and an HTTP load
generator are deployed alongside L3 in cluster-1. In each cluster,
an HTTP/2 REST API workload is deployed with three replicas per
cluster. The benchmark coordinator instructs the load generator
to generate requests according to the scenario’s request volume.
The load balancing algorithm distributes these requests to the API
workload. The benchmark coordinator instructs the API workloads
via a RabbitMQmessage queue to artificially delay HTTP responses
according to the scenario’s latency distribution and simulate failed
requests.

Before starting a scenario, the coordinator performs a short
warm-up period to populate caches and establish baselines for all
the internal EWMAs of L3. After each benchmark scenario has
run for 10 minutes, the coordinator retrieves the request latency
and HTTP status code of each request and calculates the resulting
success rate. Additionally, the coordinator retrieves metrics for per-
centile latencies, RPS, and internal components of L3, like EWMA
values with a one-second granularity. This allows us to reason about
the internal state of L3 at any point in time and explain behavior
observed for certain scenarios.

5.2 Validation and Robustness Testing

In this section, we perform benchmarks to validate design decisions
of L3. First, we determine a penalty factor in §5.2.1, which is used
for all subsequent benchmarks. Then, we compare the performance
of the EWMAwith the PeakEWMA algorithm in §5.2.2 and validate
that EWMA is the right choice for L3’s use case.

5.2.1 Penalty Factor. To highlight the effect of the constant penalty
factor P introduced in §3.1 on success rate and latency decrease,
we run a series of benchmarks with the failure-2 scenario.
Failure-2’s latency is shown in Figure 1b and success rate is de-
picted in Figure 7a. The success rate of this scenario is mostly
around 99% for all three clusters, with a few rare spikes down to
90%. We vary the value of 𝑃 for each benchmark run, starting from
𝑃 = 100𝑚𝑠 up to 𝑃 = 1000𝑚𝑠 . Additionally, we perform another run
with 𝑃 = 1500𝑚𝑠 to verify the trend for larger 𝑃 . We calculate the
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Figure 7: Understanding the impact of penalty factor on scenario failure-2. a) the success rate of the scenario. b) the penalty
factor 𝑃 impacts the success rate and percentile latency decrease. We chose 𝑃 = 0.6𝑠 as a good compromise between success rate

and percentile latency decrease

relative percentage decrease of the percentile latency of L3 in com-
parison to the round-robin algorithm. We repeat each experiment
twice to increase our sample size.

Figure 7b shows the impact of different 𝑃 on the success rate
and the latency percentile reduction. With increasing 𝑃 , the latency
percentile reduction diminishes. The reason for such behavior lies
in Equation 3 for the latency estimate 𝐿𝑒𝑠𝑡 . By increasing 𝑃 , the
TrafficSplit’s backend weights 𝑤𝑏 change due to the failure rate.
Thus, the ratios among the values of 𝑤𝑏 change more extremely.
In such situations, individual backends are brought closer to their
saturation point, which is accompanied by higher latency.

𝐿𝑒𝑠𝑡 is designed on the assumption that clients perform retries
on failed requests. Accordingly, we see the RPS increase when
the failure rate increases. In our benchmark, however, we did not
perform retries for simplicity. We argue that the effect of 𝑃 on the
latency percentile decrease might not be as strong with retries as
in our benchmark.

Furthermore, we analyzed the impact of 𝑃 on the success rate.
A larger 𝑃 increases the latency estimate 𝐿𝑒𝑠𝑡 , which lowers 𝑤𝑏

and the proportion of traffic sent to backends with a lower success
rate. Thus, the success rate increases with larger 𝑃 , although the
increase of success rate diminishes with larger 𝑃 and eventually
converges towards a ceiling. The ceiling is largely determined by
the backend with the highest success rate, as its success rate is the
best that can be theoretically achieved. The average success rate
of the backend with the highest success rate at any point in time
is 99.8% in scenario failure-2 used for this benchmark. Thus a
ceiling around 99.0% seems reasonable for our algorithm in this
scenario. Measuring the round-robin success rate resulted in an
average of 98.59%, similar to what was achieved with 𝑃 = 100𝑚𝑠 .

An additional improvement could involve L3 dynamically de-
termining 𝑃 for each workload based on historical latency data
from failed requests. However, in its current state, we adopt a static
approach, setting 𝑃 = 600𝑚𝑠 for all benchmarks. This choice aims
to strike a balance between latency and success rate across varying
workloads.

5.2.2 Comparing EWMA with PeakEWMA. For L3,
we considered using PeakEWMA, an EWMA algo-
rithm that is especially sensitive to sample peaks.

Round-robin
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Figure 8: The P99 latency

of round-robin, and L3 with

PeakEWMA or EWMA.

We compare L3 with ei-
ther EWMAor PeakEWMA
with the round-robin algo-
rithm. For this benchmark,
we use scenario-4 with
its 99th percentile latency
shown in Figure 6b since
the tail latency of execut-
ing request in this scenario
has the highest fluctuation
among the five traces we
obtained from the Tier Mo-
bility network. Each bench-
mark was performed three
times.

Figure 8 depicts that
L3 with EWMA or
PeakEWMA both out-
perform the round-robin
algorithm. More specifically, we can observe from the 99th
percentile latency results that PeakEWMA and EWMA reduce
the latency by 26.7% and 28.4% compared with the round-robin
approach. As EWMA slightly decreases the latency by 2.3%
compared to PeakEWMA, we use it for all subsequent benchmarks.

5.3 Latency and Success Rate

For general performance evaluation, we run a series of benchmarks
to analyze both the latency in §5.3.1 and the effect of introducing
failure rate on latency and success rate in §5.3.2.

5.3.1 Latency. In this section, we first report the 99th percentile
execution latency of the hotel-reservation application of DeathStar-
Bench benchmark [37] for the round-robin, C3 [49], and L3, and
then show the performance of different systems when applying
them on TIER Mobility’s traces.



Middleware ’24, December 2–6, 2024, Hong Kong, Hong Kong Olivier Michaelis, Stefan Schmid, and Habib Mostafaei

Round-robin C3 L3
0

100

200

300

400

500

P
99

la
te

nc
y

(m
s)

45
9.4

39
1.2

35
9.6

(a) scenario-1

Round-robin C3 L3
0

25

50

75

100

125

P
99

la
te

nc
y

(m
s)

11
5.4

82
.4

74
.7

(b) scenario-2

Round-robin C3 L3
0

100

200

300

400

500

600

P
99

la
te

nc
y

(m
s)

51
3.3

46
4.9

41
5.0

(c) scenario-3

Round-robin C3 L3
0

200

400

600

P
99

la
te

nc
y

(m
s)

56
3.7

53
8.0

51
2.7

(d) scenario-4

Round-robin C3 L3
0

25

50

75

100

125

P
99

la
te

nc
y

(m
s)

11
6.4

10
9.2

10
5.7

(e) scenario-5

Figure 10: The 99th percentile latency with L3 decreases in comparison to round-robin and C3 by 22% and 8% for scenario-1, 35%
and 9% for scenario-2, 19% and 11% for scenario-3, 9% and 5% for scenario-4, and by 9% and 3% for scenario-5, respectively.
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Figure 9: The execution la-

tency of the algorithms when

running the hotel reserva-
tion application of DeathStar-

Bench benchmark in [37].

DeathStarBench. We con-
ducted experiments using
the hotel reservation appli-
cation from the DeathStar-
Bench suite, generating re-
quests with a 100% success
rate over a 20-minute dura-
tion. We ran the benchmark
with different RPS with lit-
tle to no changes in the re-
sults. At around 1000 RPS
we approached the satura-
tion points of some of the
microservices at our test
environment’s scale, which
led to an increase in la-
tency. To prevent individual
workloads from saturating
due to a lack of autoscaling
mechanisms, we chose to
run the experiments at 200
RPS. Each benchmark configuration was repeated three times in
alternating order. Figure 9 shows that L3 achieves a 26% and 22%
reduction in 99th percentile latency as experienced by the user com-
pared with round-robin and C3 strategies. The results confirm the
effectiveness of including latency, success rate, and RPS in selecting
the replicas in a multi-cluster environment.

Tier Mobility. We run L3 on five different scenarios, i.e.,
scenario-1 to scenario-5, where their trace information is
shown in Figure 1 and Figure 6. We report the performance of
L3 for each scenario in Figure 10 and compare them with the round-
robin and C3 algorithms. We repeat each scenario three times to
increase the sample size for each load balancing algorithm.

Out of the five scenarios, scenario-1 shown in Figure 10a and
scenario-2 shown in Figure 10b have widely fluctuating 99th
percentile latencies, with the median latency of one backend more
often worse than the 99th percentile latency of the other backends.
This creates quite favorable conditions for L3, as large performance
differences between backends make it relatively easy to favor one
backend over the others. In these scenarios, L3 improves the 99th

percentile latency by 21.7% and 8% over round-robin and C3 for
scenario-1, and 35% and 9% for scenario-2, respectively.

The three scenarios out of five, i.e., scenario-3, scenario-4,
and scenario-5, shown in Figure 10c, Figure 10d, and Figure 10e
have a stable median latency with some irregular peaks in the
99th percentile latency. For example, the backends’ median latency
in scenario-1 has an average standard deviation of 𝜎 = 30.5𝑚𝑠 ,
while the backends in scenario-5 have a standard deviation of
only 𝜎 = 6.3𝑚𝑠 . Due to the relatively constant median latency,
the 99th percentile latency plays a decisive role in the C3 and L3
algorithms. Since the 99th percentile latency fluctuates much more,
it is beneficial to use PeakEWMA over EWMA to catch up with
sudden peaks in latency quickly enough.

5.3.2 Success Rate. We evaluate the performance of L3 on success
rate and latency by benchmarking two scenarios with different
failure rate characteristics, comparing the results to round-robin
and C3. As the microservices — from which the production data
for scenario-1 to scenario-5 were taken — have very high avail-
ability and therefore no significant failure rate except during out-
ages, we converted two of these scenarios into failure-1 and
failure-2 by injecting artificial failure. failure-1 has an average
success rate of 91.4% with intermittent drops of success rate for sin-
gle clusters down to 30%, representing heavy impact on availability.
The average success rate of failure-2 is 98.5%, with a success rate
below 100% for most of the time and short drops by a maximum of
5%.

Figure 11 shows that L3 improves the 99th percentile latency over
round-robin by 18.5% for failure-1 and by 35% for failure-2
scenario. Figure 12a depicts that L3 improves on round-robin’s
success rate from 91.4% to 92.4%. Figure 12b shows the results for
failure-2, in which the success rate is almost unchanged slightly
above 98%. It should be noted that C3’s replica ranking algorithm
does not perform success rate optimizations. The success rate is,
therefore, consistently worse compared to the other algorithms, as
it doesn’t compromise latency for success rate.

It is important to note that the results are not directly comparable
with the results from §5.3.1. Although the benchmarks of the same
scenarios have similar ratios of different percentiles, the absolute
values are not comparable. The benchmarks were conducted on
different days, and the test environment was destroyed after each
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Figure 11: The 99th latency percentiles in failure-1 and

failure-2 scenarios.
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Figure 12: Improvement of success rate in failure-1 and

failure-2 scenarios.

series of benchmarks to save costs. Therefore, the absolute values
are not comparable due to different AWS EC2 instances and poten-
tially a very different distribution of containers across data centers
of availability zones. Nevertheless, we can observe the trend that
L3’s latency percentiles of the benchmarks in this subsection per-
form slightly less well than the benchmarks in the previous §5.3.1.
The reason is that the weighting algorithm 1 makes trade-offs, as it
optimizes for both low latency and high success rate.

6 RELATEDWORK

Service meshes allow application developers to focus on the
implementation of business logic instead of infrastructure con-
cerns [32, 53]. We overview the attempts to improve the differ-
ent aspects of offering microservices in geo-distributed scenarios.
Within service-to-service load balancing, we distinguish between
three load-balancing strategies: optimizing for availability, latency,
and network transfer cost.

Optimizing for availability. Most service mesh implementations
support multi-cluster failover functionality, which automatically

routes traffic to an available replica of the service in another cluster
in case of reduced availability of a service replica. This functionality
is usually implemented based on health checks. Once a service
replica is marked as unhealthy, the service mesh switches the traffic
to an available replica. This is the case with locality load balancing
for Istio [11], Linkerds failover extension [9], Traffic Director (a
managed service mesh control plane by Google Cloud Platform,
GCP) [19], and AWS’ service mesh offering AppMesh [15]. However,
the AWS AppMesh solution relies on a service mesh external DNS
service, which means that in the worst-case scenario, the failover
will take as long as it takes for the time to live (TTL) of cached DNS
records to expire.

With L3, traffic can be quickly forwarded to other clusters with-
out waiting a potentially long time for the fallback mechanism
to kick in. If a failure due to overload in a part of the system is
imminent, it may manifest in symptoms such as increased latency.
In response, L3 proactively begins load balancing traffic to another
cluster at an early stage.

Optimizing for latency. Service mesh implementations typically
have mechanisms for application layer protocols to optimize la-
tency within a cluster. Linkerd [10] maintains a moving average of
the round-trip time of other services’ replicas in the network proxy
of each container. The number of outstanding requests weighs the
moving average, and Linkerd distributes the traffic to the replicas for
which this cost function is the smallest [2]. To the best of our knowl-
edge, no service mesh implementation supports latency-based load
balancing across multiple clusters, as L3 does. ServiceRouter [46]
minimizes the remote-procedure call (RPC) latency for Meta’s ser-
vice mesh while considering the routing of the requests among
different regions. Expected Latency Selector (ELS) is a load balanc-
ing algorithm from Spotify [1] with similarities to C3 proposed
in [49]. The algorithm uses latency, success rate, and queue depth
metrics of pending requests to balance traffic to Virtual Machines
(VMs). However, ELS does not support service meshes, and the im-
plementation is not publicly available. NetMarks [51] improves on
the default Kubernetes scheduling by leveraging data plane metrics
offered by Istio to reduce latency.

Optimizing for network transfer cost: Transferring data among
different regions of public cloud providers can increase the cost of
service execution in a geo-distributed cluster due to load balancing
decisions [43]. The three most prominent public cloud vendors,
AWS, Azure, and GCP, charge for all data transfer unless the trans-
fer stays within the same data center [4, 7, 12]. They charge even for
data transfer between a region’s different availability zones, which
is crucial for high-availability distributed system deployments. Link-
erd, Istio, and GCP’s Traffic Director support locality-aware load
balancing, which strives to balance traffic to targets within the same
locality zone to avoid additional costs.

At present, L3 lacks awareness of the network transfer costs and
does not factor them into the load-balancing decisions. With the
increasing maturity of service meshes and growing awareness of
network costs, further optimizations could be possible in the future.
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7 CONCLUSION

We proposed L3, a mechanism that builds on top of service meshes
to minimize latency by directing traffic to the service replicas with
the lowest latency. L3 accounts for the traffic distribution by react-
ing quickly to changes in latency, success rate, and RPS metrics
of the replicas, thus providing service responsiveness and avail-
ability through latency- and fault tolerance. We performed a set of
benchmarks to evaluate the performance of L3 in a multi-cluster
service mesh environment, with a wide variety of latency behavior
from different real-world microservices. We found that L3 signif-
icantly improves latency and can be used for arbitrary black-box
microservices without fine-tuning algorithms or environments with
high variability in their usage patterns. In future work, L3 could
be extended with additional parameters to make it aware of data
transmission costs from cloud vendors or energy availability. We
further plan to determine the penalty factor P individually and
dynamically for each workload. The continuous feedback about the
response time of unsuccessful requests could be used. This would
allow us to factor in the cost of failed requests more realistically.
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