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Programmable packet schedulers provide great flexibility in the ordering of packet transmission. They allow
network operators to optimize crucial performance metrics, such as Flow Completion Time (FCT), using
strategies that adapt to changes in the characteristics of incoming traffic. A challenge in programming these
devices is that they are severely limited in registers, memory, and control flow operations. The popular
scheduling strategy Push-In First-Out (PIFO), for example, cannot be straightforwardly implemented because
it relies on sorting packets, which is difficult to implement at line speed on current hardware. Fixed-priority
approximations of PIFO, like SP-PIFO and AIFO, do have hardware implementations but generally still do not
scale well in, for example, the number of memory cells being used.

This paper introduces a new PIFO approximation strategy, Exp-PIFO, which prioritizes packets based on
adaptive exponential prioritization criteria, called exponential bins. Exp-PIFO approximates the behavior
of PIFO using only two memory cells to keep track of its state and uses a lookup table to avoid a complex
control flow. We initially expected our improvement in memory and computation to come at a cost w.r.t. FCT
performance compared to PIFO and its existing approximations. However, our empirical evaluation shows
that Exp-PIFO sometimes even outperforms strict PIFO. We provide an explanation for this behavior and
demonstrate the practical feasibility of Exp-PIFO through a proof-of-concept implementation on an Intel
Tofino switch, which uses significantly less memory than comparable implementations of SP-PIFO and AIFO.
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1 Introduction

Programmable networks for optimizing traffic flows. Given the increasingly stringent
performance requirements on communication networks, the networking community has recently
put great efforts into designing more flexible and programmable networks, enabling a wide range
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of optimizations [5, 6, 14, 21, 27, 31]. A particularly interesting approach to improving network
performance is programmable packet scheduling. Traditionally, vendors pre-programmed packet
scheduling algorithms, and flexibility was limited to configuring a few parameters [13], such as
queue length. Recently, however, we have been witnessing the emergence of more and more
powerful programming abstractions supporting tailored scheduling algorithms, at least for strict
priority and fair queuing,.

The introduction of programmable scheduling allows operators to deploy packet schedulers on
hardware [27]. It enables network operators to enact specific scheduling policies by assigning a rank
value to packets, indicating their respective priority with high resolution. Programmable schedulers,
in turn, process these tagged packets, scheduling them based on their assigned rank orders. This
approach provides a flexible and customizable framework for tailoring network scheduling policies
to meet specific operational requirements. Although great insights on clever algorithms for assigning
ranks to packets have been obtained [17, 19, 24, 26, 27], existing solutions come with limitations in
terms of hardware requirements and performance.

A common performance metric for which network operators wish to optimize is the average flow
completion time (FCT), where flow refers to the total amount of data a host wants to transmit. This
flow is divided into packets that can be transmitted individually. The FCT for a host is then defined
as the total time from transmission of the first packet until all packets of a flow are received [15].
If packets are dropped in the network due to queue overflows, they will be retransmitted by the host.

PIFO and its approximations. Push-In First-Out (PIFO) queues have been proposed to provide
an abstraction to implement the scheduling policies by sorting packets at line rate on hardware [27].
PIFO keeps the packets in the queue sorted using the ‘push’ primitive, which allows arbitrary
positioning of incoming packets, and drains the packets from the head. Upon arrival of a packet,
PIFO calculates its rank and places it into the transmission queue sorted by that rank (see Figure 1).
However, although PIFO theoretically obtains very good results current hardware is still too
restricted to implement this strategy at line rate [20]. The main issue is that current programmable
devices do not support sorting enqueued packets.
On current hardware, approxima-
tions to the PIFO behavior have been Incomin
: . 9 Push-In
proposed, which also obtain good per- packels (oo PushOut
formance [5, 6, 16, 21, 25, 31, 32]. s [5] 4] [3] []}Fuen-u
— PIFO queue
Most notably, SP-PIFO [5] approx-
imates PIFO behavior by assigning
packets of ‘similar rank’ to the same
fixed priority in an otherwise classi-
cal fixed priority scheduler. Order errors are therefore restricted to occur only within the same
priority queue. Within this approach of approximating PIFQ, it is still an open question what the
best classification of ‘similar rank’ is to improve the FCT. An alternative approximation, AIFO [31],
for example, uses binning according to an estimation of quantiles in the rank distribution.

Fig. 1. Programmable packet scheduler with a PIFO queue.

Hardware limitations. Current programmable devices are limited in the number of registers
available to the programmer, the total amount of memory, and the type of control flow operations.
For the design of a successfully implementable PIFO approximation, which needs to leverage
register read/write operations to compute equivalence classes of rank, and needs to keep track of a
number of states to make the strategy adaptable, it is therefore important to keep these operations
as simple and lightweight as possible, avoiding unnecessary use of registry operations, memory,
and control flow decisions.
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While current strategies like SP-PIFO are implementable within these restrictions, it turns out
that they do not scale very well, for example, in the number of queues one would like to deploy. As
a consequence, the resolution of the approximation cannot be controlled very well. By keeping our
approximation strategy very light-weight, we manage to circumvent this problem for our proposed
implementation.

Contribution of this paper. In this paper, we focus on improving the implementability of PIFO
approximation by exploring exponential binning, i.e., using a binning strategy with increasing
bin-sizes for lower priorities. This strategy turns out to be cheap in memory and computation.
Moreover, it allows for dynamic adaptation to deal with variable flow size distributions by scaling
the binning exponent. While we had expected this reduction in implementation complexity to
come at the cost of an increase in FCT, exponential binning in fact turns out to outperform strict
PIFO with respect to this metric in some realistic scenarios. We provide an explanation for this
observation and discuss implications for the current approach for approximating PIFO, and reflect
on whether approximation of PIFO is still the best basis when aiming to optimize the FCT.
In summary:

e We propose a simple scheduling mechanism using exponentially increasing bin sizes (base 2),
which maps packet ranks to priority queues with minimal memory and computation. The
approach adapts dynamically to changing traffic using a single runtime statistic.

e We provide a Tofino implementation that uses only six pipeline stages and significantly less
memory than SP-PIFO (5.42X less) and AIFO (2.49X less).

e Our large-scale simulations show that Exp-PIFO reduces flow completion time (FCT) by up
to 22.24% compared to PIFO and 24.45% compared to SP-PIFO. Moreover, analysis of the
simulations shows that Exp-PIFO provides a better approximation of PIFO than SP-PIFO
regarding packet-drop behavior.

e We analyze the performance improvement over PIFO to explore in which scenarios it is not
optimal w.r.t. FCT. This gives our research a new direction, in which approximation of PIFO
is still interesting, but no longer our main objective.

e We show that Exp-PIFO can handle a larger number of queues than SP-PIFO, which is
restricted to a few queues due to the lack of support by currently available programmable
devices.

e To support reproducibility, we release our code and experiment artifacts as an online appen-
dix .

Outline. In Section 2, we introduce Exp-PIFO and discuss its general workings, illustrated by
discussing how it behaves in typical websearch [7], Hadoop [22], and datamining [18] workloads
that are often used as benchmarks. Furthermore, we give a pseudocode specification of the algorithm
suitable for programmable packet schedulers and show how we encode and implement the bin
sizes in P4 on a Tofino switch. In Section 3, we evaluate the performance of Exp-PIFO on the
websearch and datamining workloads by comparing it to the performance of PIFO and SP-PIFO.
We identify conditions under which PIFO may not be optimal w.r.t. FCT, and subsequently look
into the packet-drop behavior of Exp-PIFO compared to that of SP-PIFO. Section 4 discusses some
earlier work on programmable packet scheduling and other types of packet schedulers that inspired
this paper. We conclude our work in Section 5.

Ihttps://github.com/mostafaei/EXP-PIFO
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2 The Exp-PIFO Algorithm
2.1 Adaptive Mapping of Rank to Priority

We consider a switch in which each egress port has M priority queues Q; (1 < j < M), with Q;
indicating the highest priority queue. The switch enqueues a series of packets p; of different flows
in this set of priority queues, and the goal is to assign priorities to packets so that the traffic through
the switch is optimized for FCT.

A general approach to this is to assign higher priorities to packets originating from smaller
flow sizes, similar to the shortest-processing-time first approach in queuing theory. However, as
the number of queues in an egress port is limited, this requires a mapping from flow sizes to
priorities. Because this method of mapping into priorities is, in fact, not specific to flow sizes,
we utilize a mapping from a generic ranking parameter to priorities. In this paper, we simply
speak of a rank, indicating some generic notion of importance, but we will keep the FCT as
a motivating example in the back of our minds. We use r; to indicate the rank of a packet p;.

Moreover, as the distribution of flows in a at af
network typically changes over time in real m Ba— | Eml
networks, our objective extends beyond iden- = <
tifying a static rank-to-priority mapping. We m => @ 3|
aim to devise a mapping that is not static but @ psel |
adaptive, adjusting to the evolving distribution  souas Boungs  Reacton fomexrank change
of ranks observed in recent traffic while still
optimizing the FCT. Fig. 2. Initial enqueuing of packets, and its update, ac-

Figure 2 illustrates the adaptive rank-to- cording to the adaptive rank-to-queue function result-

queue mapping that we propose in this paper ing from the Exp-PIFO algorithm, for 3 priority queues.
and will explain in detail in the coming sections.
Each colored box in Figure 2 indicates a packet, and the number within each box shows its rank.
Notably, a packet with the lowest rank value signifies its association with a high-priority flow.
Initially, Exp-PIFO observes six packets with a maximum rank of 45. It selects an exponent value f
slightly higher than this maximum, and uses 2% to set the upper bound of the lowest-priority queue
(left side of Figure 2). As new traffic arrives, the queue bounds adapt-illustrated by the arrival of a
packet with rank 200, which prompts an update to the queue boundaries (right side of Figure 2).

2.2 Exponential Mapping and Periodic Adaptation

Our approach, which we name Exp-PIFO, is based on a mapping from ranking to priority by
assigning a bound b; to each priority queue Q;, where j € 1... M and M is the total number of
queues. This bound serves as a threshold value that determines the admission of incoming packets.
A packet of rank r would go into queue Q; if 0 < r < by and into Qj,; if b; < r < bj4;. Higher
ranks map to higher queue values, which we recall means lower priority.

As our primary aim in this paper is to achieve resource efficiency, and as we would like to
be robust against large variations in flow size over time, our most important design choice is to
use exponentially increasing bins. As a base formula, we choose b; = 2/ #=1*Y . The shape of this
formula is chosen such that y purely determines the bound set for b; and f + y determines the
bound of bys. In our algorithm, y is taken to be constant. As we aim to optimize the FCT, scheduling
below the packet level is likely not relevant. The smallest relevant rank rp;, is therefore equal to
the maximum size of an Ethernet packet. To pick b; = rp;y, we choose y = log, (rmin). Over time,
we keep track of the highest recently observed rank r,,,, and, ideally, would similarly match its
size to the lowest priority by = rpax bin by choosing f = log,(rmax) — -
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Classify rank distribution with
exponentially increasing bin sizes

Outgoing packets

o] faol [17] [6] [7]

Assign

Incoming packets bounds

[e] [so] [ao| [17] [7]

Periodic window of 5

Priority
queueing

Fig. 3. Rank distribution identification and queue bounds assignment of Exp-PIFO. There are already some
enqueued packets in each queue with a different color. The numbers are the rank indicators.

However, as we aim for low resource usage in hardware implementations, we have to think of
B, which is a variable in our strategy, as an integer value. Implementing floating-point numbers
on current programmable devices is infeasible. We consider two options for rounding f. Taking
B = [log,(rmax) — v leads to an over-approximation of the bound on Qy, causing a waste of
queue-space while f = max(0, | log,(rmax) — y]) leads to an under-approximation, causing some
packets to not being stored in Qs at all. This latter problem is however easily solved by defining b;
only for 1 < j < M and effectively storing anything larger than by_; in by.

As initial experiments show that the performance difference when rounding up or down is small,
and because the second option is less wasteful in terms of queue space than the first, we focus on
rounding down for our calculations on f for the remainder of this paper.

Finally, to keep track of  throughout a periodically replenished window of size C, we implement
a counter c that keeps track of the number of arrived packets. In other words, our replenishment
strategy is not based on timing, but on inflow. Whenever a packet arrives with a rank r such that
| log,(r) —y] > B, we increase the value of § to match this new maximum immediately. Whenever
¢ reaches the maximum value C, we reset ¢ to 0 and reset f to match the rank of the most recent
packet, thus recalibrating the system to adapt to changing flows. Figure 3 illustrates the components
that implement this approach.

Ilustrative example. The main idea behind Exp-PIFO is that we save on computation and
memory cost by using a single value to characterize our binning strategy, rather than needing one
or more registers per queue. Let us illustrate our use of this adaptive exponential classifier using
three real traffic distributions.

Figure 4(a) shows the Cumulative Distribution Function (CDF) of the flow size for websearch [7]
datamining [18], and Hadoop [22] workloads. We set the simulation time to 10X the FCT of the
largest flow and plotted the CDFs using the most recent 50% of observed rank values to reflect
long-term behavior under steady-state conditions. As one can see, these distributions are quite
heavy-tailed, with sometimes up to 20% of the flow sizes being much larger than the median flow
size. This effect is aggravated if we look at the individual distribution of ranks in Figure 4(b,c,d). The
packet rank is based on remaining flow size, meaning that large flows will contain both packets with
a high rank (at the start of the flow) and with a low rank (at the end of the flow), while small flows
contain only packets with a low rank. However, note that the ranks are depicted on a logarithmic
scale, which shows that large flows contribute many more packets with a relatively high rank than
with a relatively low rank. As we aim to capture the different distributions of Figure 4(b,c,d) with a
single characteristic, we need at least an exponential function as a first-order approximation to this.

Proc. ACM Netw., Vol. 3, No. CONEXT3, Article 17. Publication date: September 2025.
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Fig. 4. Flow size distribution (a) Three typical examples of flow-size distributions in a datacenter setting (b)
for websearch, (b) datamining, and (c) Hadoop workloads in a scenario with six priority queues.

The colored areas illustrate the bins that are chosen based on an exponential that is scaled between
Ymin and rp,q, in these figures. It is clear that this does not give an equiprobable distribution, but it
does lead to a distribution that favors flows that have a high probability of finishing soon and is
therefore expected to work reasonably well as an approximation of PIFO.

2.3 The Exp-PIFO algorithm

Algorithm 1 shows the pseudo-code
of Exp-PIFO. The system starts with
an initialization of the packet counter
c and exponent f, which are kept as reg-
isters throughout the operation of the 1 ¢ = 0> Init register for packet counter
ingress control flow. Subsequently, the 2 f=0» Init register for exponent
algorithm waits for arrival of a packet, 3 while true do

Algorithm 1: Ingress control using Exp-PIFO.
Inputs: window size C and number of queues M.

reads the rank of the packet into a regis- 4 wait_for_packet_arrival()
ter, computes the floor of the logarithm s x := obtain_packet_rank() » x=r
of the rank, and compares this to the ¢ x := compute_log(x) » x := max(0, | log,(r) — y])
bound parameter f. If larger, the param- if x > ff then
eter  needs to be increased to ensure ‘ B :=x » Update exponent
the queue bounds fit the current traffic. c=c+1» Inc packet counter
Subsequently, the algorithm increases if ¢ > C then
the packet counter and checks whether 1 C=0» Start new window
the end of the current window has been - B = x » Re-initialize exponent
reached. If so, the counter and the bound .
parameter are re-initialized. Finally, the B x i= compute_queue_id(x, f)
. > x=((x+1) - M-1)+p)+1

correct queue is computed from the log-
arithm of the rank, and the packet is for- 1 > Now:
warded to this queue. x = ((max(0, Llogy (r) =y 1) +1) - (M= 1)) + f+1

Clearly, the least straightforward op- *° > assuming M > 1 andsz > 1 we derive
erations in this algorithm are the compu- 16 | > firstly: by =231 <7
tation of the logarithm of the rank in the 17 > and secondly: r < 2831 = b,
function compute_log(x) which returns 1s if x < M then
max(0, | log,(x) — y]) in line 6 and the 19 ‘ enqueue_packet_in(x)
arithmetic computing the queuing index, 20 else
compute_queue_id(x, f) which returns 21 | enqueue_packet_in(M)

((x+1)/(M—-1)) + f+ 1, in line 13.
All other operations are straightforward

Proc. ACM Netw., Vol. 3, No. CONEXT3, Article 17. Publication date: September 2025.
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comparisons, additions, or memory operations. In the next section, we will discuss how to implement
these functions on specific hardware, Tofino, using P4 as a programming language.

The exponentially increasing bins are what distinguishes Exp-PIFO from previous works [5, 25]
that try to approximate the behavior of PIFO queues without the need for packet ordering. Crucially,
we observe that this choice allows us to represent the current rank to priority mapping using only
a single memory cell §, while allowing for a large range in possible ranks. Regardless of whether
flows have typical sizes of KBs or MBs, the algorithm can scale its workings to match the current
distribution.

Furthermore, Exp-PIFO uses periodic updates of its mapping to adapt to changes in the traffic
distribution. Notably, approximation mistakes will briefly be higher after each periodic update
because the rank to priority mapping is initially reset, but during our experiments, we have found
that these moments are generally brief and do not influence the performance significantly w.r.t.
optimizing the FCT. Depending on the use-case, one could consider an additional memory cell
that keeps track of the maximum value of § found in the previous period, and use this upon
re-initialization. This is however left as a topic for future research.

In summary, our initial design of Exp-PIFO achieves its design goal of low memory footprint
and good scalability and adaptability using only two memory cells for tracking the rank of recent
packets and the number of arrived packets in the most recent update window. Next, we will illustrate
the effectiveness of our proposed approach, and discuss how it can be implemented using limited
registry and control flow operations.

2.4 Tofino Implementation

While implementing the algorithm outlined in the previous section on a Tofino switch [2] using
the P4 [12] language, we have to keep a number of restrictions in mind. Firstly, while processing
a packet on a Tofino switch, the number of read and write operations per register per packet is
limited. We do have metadata at our disposition to perform computations or store a read register
value, but those variables are valid as long as the packet resides within the switch and memory
is freed when a packet leaves the switch. Secondly, the number of registers available is limited,
but our algorithm has been designed to only use two. Thirdly, as there is limited support by the
data plane in doing complex arithmetic, we aim to carefully use the precious memory of the device
through look-up tables. Therefore, we have to keep the sizes and number of input variables in mind
while designing those look-up tables.

To get an impression of the range of rank values that we need to be able to process, and hence
the number of bits required for our registers, we study the values that occur in a number of typical
traffic workloads. Figure 4(a) shows the flow size distribution of websearch [7], datamining [18],
and Hadoop [22] workloads. Additionally, considering a synthetic Pareto trace [11], we can observe
that the exponent values (i.e., the value of | log,(r;)|) of a packet p; can vary in a range of 6 to
33. Some of these flow distributions are more skewed, such as Pareto. We can also notice that the
exponent value varies between 7 and 30 in the datamining workload, while this variation is limited
on the websearch. This means that the variable x in the algorithm in Algorithm 1 has to be able
to carry at least 33 bits, but also that 6 bits would suffice for the register  that carries only the
exponent value.

The look-up table for compute_log(x) in line 6 in Algorithm 1 can, in principle, be implemented
as a look-up table of range match-kind. Given 33 possible consecutive outputs and 33 input bits,
we would need 33 X 33 = 1.089 bits of memory.

Alternatively, it is also possible to split the input and first read the 17 most-significant bits of the
rank 7; into a variable xj and subsequently the 16-bit least-significant bits into x;. Mathematically,
x = 2" - xp, + x; s0 |log,(x)] = 16 + [log,(xp) if x4 > 0 and |log,(x)] = |log,(x;)] if x5 = 0.

Proc. ACM Netw., Vol. 3, No. CONEXT3, Article 17. Publication date: September 2025.
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Consequently, a 17 X 17 = 289 bit look-up table can be called on both the most- and least-significant
bits, and the result can be combined into the appropriate exponent using a comparison and addition.
Depending on how much space the coding of this approach takes, the memory footprint of it may
even be smaller than the first option. Notably, using this approach, the complexity of the algorithm
scales logarithmically with a range of ranking values.

The look-up table for compute_queue_id(x, f) in line 13 of our algorithm likely needs to be
match-by-value as it takes two input values. Both inputs are in the range of 6 bits, giving a 12-bit
input value in total. The computation produces one output value representing the queue identifier
Q;. As most switches support 8-32 queues, we can represent this output in 5 bits. The look-up table
itself can, therefore, be fit into 212 x 5 = 20.480 bits, or 2.5 KByte. Note that, in fact, this look-up
table can also immediately implement the comparison carried out in lines 18-21, thus simplifying
the algorithm somewhat in one go.

In comparison, one should note that other PIFO approximations, like SP-PIFO, need to keep each
of their queue bounds in registers to provide for the adaptability that is required. As a consequence,
these approaches require more memory, and adapting the bounds to support a larger number of
queues becomes challenging. Current implementations of SP-PIFO are limited to the use of at most
8 queues. By characterizing the entire binning using a single parameter, we avoid much of these
problems.

3 Evaluation

This section first reports the performance of Exp-PIFO using packet-level simulations in different
terms of performance metrics. Then, we evaluate the resource efficiency of Exp-PIFO implemen-
tation on Tofino switches and compare it with SP-PIFO [5] and AIFO [31]. Finally, we report the
results of running experiments on our testbed with a Tofino switch.

3.1 Packet-level Simulations

The main goal of designing Exp-PIFO is to simplify the implementation of programmable packet
schedulers and improve resource efficiency; however, we are also concerned with its performance,
particularly in reducing FCTs of flows. For this reason, we implemented a packet-level simulator.

Methodology. We use packet-level simulations to study the performance of Exp-PIFO in various
terms. We implement Exp-PIFO in Netbench [1] and use a leaf-spine datacenter topology with
four spine switches, nine leaf switches, and 144 servers. We configure the same link settings of
SP-PIFO for the topology by adjusting the bandwidth of access links to 1Gbps and the leaf-spine
links to 10Gbps. Our simulation implementation computes the rank of incoming packets based on
the remaining flow size, following the Shortest Remaining Processing Time (SRPT) policy used in
pFabric [8]. Consistent with PIFO and its approximations, our implementation does not explicitly
incorporate starvation prevention mechanisms. However, prior work, such as PDA [29] (and others),
has proposed solutions to address starvation, which can also be integrated with Exp-PIFO if needed.
As discussed in [8], pFabric rate control approximation is done using the standard TCP implemen-
tation with a retransmission time of 3 X RTTs to balance the differences in TCP Retransmission
Timeout (RTOs) among proportional queue sizes. Additionally, we configure the queue size to
accommodate 80 packets across all experiments. In the case of PIFO, all 80 packets are allocated
to a single queue. For SP-PIFO and Exp-PIFO, the 80 packets are evenly divided across 8 queues,
with each queue assigned a size of 10 packets. We empirically generate traffic using two real-world
workloads: websearch [7] and datamining [18]. Both traffic workloads are heavy-tailed and have
packet arrival time following a Poisson distribution. We route the packets using ECMP and select a
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Fig. 5. The FCT of flows across different loads on websearch workload.
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Fig. 6. The FCT of flows across different loads on datamining workloads.

random pair of source-destination servers.

Evaluation objective. The main performance objective is the FCT, but we also evaluate the
performance of Exp-PIFO for throughput and fairness. We compare the performance of Exp-PIFO
with those of PIFO [27] and SP-PIFO [5]. We ignore reporting the results for TCP and DCTCP since
their performance results have already been reported in the previous works, e.g., SP-PIFO. We also
check the impact of the different number of queues on the performance of Exp-PIFO. We use eight
strict priority queues for the evaluation unless we specify another value, and the periodic window
size is 5000 packets. To obtain a more intuitive presentation of our results, we classify the flows
into two categories: 1) small flows when the size is < 100KB and 2) large flows when > 1MB.

3.1.1 Improvement over PIFO. Figure 5 shows that Exp-PIFO can reduce the FCT of large flow sizes
up to 10.9% and 15.35% on websearch compared with PIFO and SP-PIFO. This reduction in FCT
is up to 22.24% and 24.45% in datamining workload (see Figure 6). It is remarkable that Exp-PIFO
outperforms our target strategy PIFO in these scenarios. Furthermore, it is interesting to see that
this improvement is particularly notable under high network load conditions. The improvement
is greater for the datamining workload than for the websearch workload. Next, we first address
the reasons why PIFO is not an optimal scheduling strategy for FCT in general, and subsequently
discuss how Exp-PIFO is able to exploit this.

PIFO in the context of trickle flows. The application of PIFO to FCT was inspired by the
Shortest-Remaining-Processing-Time-First (SRPT) policy in scheduling theory, which is proven to
be optimal in terms of overall average FCT when the flow size is known upon arrival. The idea is
to use PIFO with a rank set equal to the remaining flow size of a packet, so that shorter remaining
flows obtain higher priority, thus leading to a presumably optimal FCT. However, the proof of
optimality of the SRPT scheduling policy implicitly assumes a scenario with infinite buffer sizes and
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Fig. 7. An example scenario to show PIFO and optimal scheduler behavior in the presence of trickle flows.
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Fig. 8. The FCT of flows across different loads on websearch workload with a large queue size.

the entire workload of a flow arriving as a single instantaneous burst. As it turns out, in the absence
of these conditions, there are scenarios in which the SRPT scheduling policy is non-optimal.

As an example, consider the scenario in Figure 7, in which packets of two flows need to be
scheduled. All packets in all flows have the same unit size. Flow A has a size of S4 packets with a
fixed inter-arrival time of T4, while flow B has a size of Sp packets with an inter-arrival time of
Tg. Both flows start at the same time. We note that the earliest finish time of a flow X if given full
capacity would be (Sx — 1) - Tx + 1 in this case.

Next, suppose furthermore that A represents a small trickle flow, while B represents a large
burst flow. Comparatively, this means that we assume Sg > S4 (the flow B is larger than A) while
(Sp—1)-Tg+1 < (Sqa— 1) = Ty + 1 (if given full capacity, B can still finish before A because of
trickling). In that scenario, the optimal FCT is achieved by actually giving the large burst B priority.
Any interference by a packet from the trickle flow A would lower the FCT. PIFO, however, in this
scenario chooses to prioritize at least the first few packets from flow A, until sufficiently many
from B are processed in the intermediate space to let the remaining flow size drop below that of A.
Hence, PIFO is not FCT optimal in such cases.

Trickle flows in varying load and multi-hop scenarios. The question we address next is
how such trickle flows can arise in the scenarios of Figures 5 and 6. It was observed above, that
Exp-PIFO obtains its best performance w.r.t. PIFO on high workloads, which leads us to conjecture
that packet drops may cause trickle flow behavior. In the case of the original PIFO strategy, packets
with the largest remaining flow size are dropped when the queue is full. In the case of SP-PIFO and
Exp-PIFO, the decision to drop a packet takes place after a queue has been assigned to a packet. If
that particular queue is found to be full, the packet is dropped. As a consequence, depending on
the queueing strategy, a system under high load may tend to drop high-priority packets instead
of preferring to drop low-priority packets. Packet drops lead to retransmissions after a time-out,
which causes them to be spaced in time.

Proc. ACM Netw., Vol. 3, No. CONEXT3, Article 17. Publication date: September 2025.



Exp-PIFO: Scalable and Efficient Programmable Packet Scheduling

17:11

E‘ 0.30 EU./ E‘ 100 B
@ 0.251 o 0.67 2 g0 o
= E 0.54- £
=020 = =
S s 504y § 007
= 0.151 =4 =4
- 3 031 3 404
£ 010+ £ oo/ £
Q [ o .
S 0.054 -{- PIFO o 1 -{- PIFO O 204 -{- PIFO
$ 005 y = 0.1 ¥ = -
B —e—Exp-PIFO H ——Exp-PIFO z —e—Exp-PIFO
i 0.00 i 0.0 r 0
02 03 04 05 06 07 08 02 03 04 05 06 07 08 02 03 04 05 06 07 08

Load

Load

Load

(a) Average FCT for small flows (b) 99th percentile FCT for small flows  (c) Average FCT for large flows

Fig. 9. The FCT of flows across different loads on datamining workloads with a large queue size.
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Fig. 10. The simulation results for packet drops of packet schedulers on websearch and datamining workloads.

To verify whether packet drops are indeed the main explanation of the improvement of Exp-PIFO
over PIFO, we run the same simulation scenarios using very large buffers. The results of this in
Figures 8 and 9 show that, indeed, for small and average loads, the performance of Exp-PIFO and
PIFO almost coincide. However, for large flows, the situation has hardly changed. Apparently,
where packet drops can significantly delay a smaller flow, the effect on larger flows is not sufficient
to explain the performance increase.

Reflecting on possible causes further, we note that, in a multi-hop network like the one used in
the datamining scenario, trickling may also be caused by a different mechanism. If, for example, in
one hop a larger flow A gets frequently interrupted by newly arriving smaller flows, this may result
in a trickle of A further downstream. If it merges with an even larger flow B, we obtain the scenario
explained in the previous section. However, testing this hypothesis requires a new methodology,
which we leave for future work.

3.1.2 Comparison of packet drops in PIFO approximations. What still remains relevant is the
question of how well Exp-PIFO approximates PIFO in terms of packet drops. The sub-optimality
example sketched above and the large buffer experiment both suggest that creating trickles in
small flows (i.e., dropping packets of low rank) leads to worse FCT performance than creating
trickles in larger flows. The decision of PIFO to drop packets of larger rank should, therefore, still
be approximated as closely as possible. As we show next, Exp-PIFO is closer to PIFO than SP-PIFO
in this respect.

Figure 10 shows the total number of dropped packets by PIFO, SP-PIFO, and Exp-PIFO for
websearch and datamining workloads. We can observe that Exp-PIFO drops slightly more packets
than PIFO and SP-PIFO on the websearch workload when the load is less than 40%. Both Exp-
PIFO and SP-PIFO drop very similar numbers of packets when the link load is higher than 40%.
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Fig. 11. The number of packet drops per queue in Exp-PIFO and SP-PIFO for various loads on websearch and
datamining workloads.

Furthermore, we see a completely different packet drop behavior on the datamining workload in
Figure 10(b). Exp-PIFO drops more packets when the load is low, but close to SP-PIFO and PIFO
when the load increases. We investigate this difference further by looking into the queues from
which these packets are dropped.

Figure 11 shows the relative number of packet drops from each queue, for both Exp-PIFO and
SP-PIFO, in both scenarios. Figure 11(a) shows that, in Exp-PIFO, around 50% of the packet drops
on the websearch workload are from the last two queues, i.e., from the lowest priorities, while
Figure 11(c) we see that between 50% and 90% of the packet drops comes from the first queue in
SP-PIFO, i.e. from high priority packets. This behavior of SP-PIFO is in stark contrast with the
decisions taken in PIFO. Similarly, Figure 11(b) indicates that, for Exp-PIFO, around 75% of the
packet drops occur from the two lowest priority queues.

It becomes clear from this comparison that the packet drop behavior of Exp-PIFO is closer to
that of the theoretical PIFO strategy than SP-PIFO. Note that this observation is independent of the
choice of rank, so we may expect similar improvements in some non-FCT targeted settings. In any
situation where the PIFO rank has been chosen to optimize a performance metric that is influenced
by packet drops, a comparison like the one performed above may be relevant.

3.1.3 Throughput. This section reports the average throughput of large flows for websearch (see
Figure 12(a)) and datamining workloads (see Figure 12(b)) . The large flows’ throughput is the ratio
between the total number of received bytes and the sum of the FCTs.
All programmable schedulers
achieve the highest throughput

10 10
when the load is 0.2, with a drop %0.8, 830‘8 .
in throughput as the load in- < os] T 06

a R S— a
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schedulers: as the load increases,

the number of packets compet-
ing for priority grows, and the Fig. 12. The simulation results for throughput of large flows of packet

schedulers are more likely to schedulers on websearch and datamining workloads.

drop packets with higher ranks,

which are often from large flows. However, Exp-PIFO achieves the highest throughput among
SP-PIFO and PIFO even at higher loads. Additionally, we observe that SP-PIFO and PIFO have
similar throughput across both workloads as the load varies.
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Fig. 14. The impact of the sliding window size of Exp-PIFO on the FCT of flows for websearch workload.

3.1.4 Fair Queueing. This section examines the fairness among the programmable packet sched-
ulers. We achieve fairness among flows by replacing the SRPT-based rank assignment with a
Start-Time Fair Queueing (STFQ) rank computation [17], implemented on top of PIFO, SP-PIFO, and
Exp-PIFO. Specifically, the rank of each packet is calculated based on its virtual start time, which
ensures fair bandwidth sharing across flows. To provide a broader perspective, we also benchmark
our approach against Approximate Fair Queueing (AFQ). We evaluate fairness by analyzing FCTs -
considering both the average and 99th percentile — across flows of different sizes (small, medium,
and large) and under varying numbers of queues. This setup allows us to assess the effectiveness of
each scheduling strategy in providing fair service under realistic datacenter workloads. Figure 13(a)
shows the average FCTs of small flows for scenarios with a different number of queues for SP-PIFO
and Exp-PIFO. Besides pushing the FCT of flows, Exp-PIFO gains a similar performance objective
in fairness scenarios. Figure 13(b) indicates that Exp-PIFO can perform similarly to AFQ when the
link load increases. However, when the link load is smaller, Exp-PIFO can further reduce the FCT
of small flows than AFQ.

3.1.5 Impact of Window Size. We now evaluate the effect of periodic windows on the FCT of
small and large flows in Exp-PIFO. Figure 14 and Figure 15 show that having a periodic window
size of 1000 packets is enough to capture a good estimation from the distribution of ranks in the
websearch and datamining workloads. To further understand the sensitivity of Exp-PIFO to the
periodic window size, we reran the experiments with a broader range of values, including more
extreme cases such as 10 and 1,000,000 packets. We find that, except for very small windows (e.g.,
10 packets), where the system lacks sufficient data to accurately estimate queue bounds, Exp-PIFO
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Fig. 15. The impact of the sliding window size of Exp-PIFO on the FCT of flows for datamining workload.
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Fig. 17. The effect of queue parameter on the FCT of flows for datamining workload.

has similar performance for other window sizes, indicating robustness across a wide operational
range. However, changing the periodic window size has little impact on the FCT of flows for both
workloads. We observe a slight 99" percentile FCT improvement when the window size is 5000
packets since Exp-PIFO can correctly adapt the queue bounds to improve the FCT. We also notice
that when the load is 30% for the experiments using the datamining workload, the FCT of large
flows is slightly increased when w = 5000. One reason for such behavior is that the system receives
more large packets that end up in the wrong queue or are dropped by the admission mechanism of
Exp-PIFO. Therefore, given its overall robustness and slight benefits at certain percentiles, we run
the experiments using 5000 packets as the size of the periodic window.

3.1.6 Impact of Number of Queues. In this section, we report the FCT results of Exp-PIFO for
scenarios when the number of strict priority queues M is set to 4, 8, and 16. Figure 16 and Figure 17
report the average FCT of small flows, the 99th percentile FCT of small flows, and the average FCT
of large flows. We summarize the main findings as follows. (i) When the number of bins (queues) is
small, the exponential mapping covers wide rank intervals per bin. This design compresses most
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small flows into the highest-priority queues, ensuring they are quickly transmitted and largely
isolated from larger flows—explaining their low tail latency. However, this coarse binning forces
many large flows into a few low-priority queues, increasing buffer contention and exacerbating
delays. These low-priority queues become bottlenecks, leading to worse average FCT for large
flows. (ii) In contrast, increasing the number of queues creates finer-grained bins. Large flows are
no longer grouped together, which spreads contention more evenly across queues and improves
their throughput and latency. Yet, this added granularity comes with a cost: small flows are now
distributed across more bins, weakening the strict prioritization they previously enjoyed. Conse-
quently, small flows are more likely to be scheduled after marginally larger flows, increasing their
tail latency.

3.2 Hardware Testbed

Resource consumption. Exp-PIFO is a resource-efficient programmable packet scheduler that
leverages a small amount of the precious memory resources of the switches for enqueueing
packets and leaves the rest for other purposes. For instance, operators need the memory of the
switches to enable multi-tenancy. The saved memory by Exp-PIFO can be used to perform network
measurements or machine learning tasks at the edge of the network.

Resource type  Exp-PIFO SP-PIFO AIFO

Match Crossbars 2.21% 8.05%  10.74%
Gateway 11.46% 10.62% 3.2%
Hash Bits 3.81% 4.81% 1.92%
SRAM 2.92% 18.75% 7.29%
TCAM 2.08% 0.42% 0%
Stateful ALUs 8.33% 20% 47.92%

Logical Table IDs 17.71% 18.12%  26.56%

Table 1. The resource consumption of Exp-PIFO, and reference implementations of AIFO and SP-PIFO on
Intel Barefoot Tofino. The values are presented in percentages.

We first report on the resource efficiency of Exp-PIFO and compare it with the Tofino imple-
mentation of SP-PIFO and AIFO when implemented on Tofino bf-sde-9.11.0. AIFO uses one FIFO
queue to schedule packets, while SP-PIFO and Exp-PIFO leverage multiple strict priority queues.
Another key difference between Exp-PIFO and other packet schedulers is that they need to keep
multiple states regarding the rank of incoming packets for admission. SP-PIFO leverages multiple
registers to keep the queue bounds, while AIFO uses them to store the sampled packets for quantile
computation. Table 2 indicates the resource consumption of Exp-PIFO, SP-PIFO, and AIFO. Despite
using multiple priority queues for admission, Exp-PIFO needs 5.42x less SRAM and 2.4X less
stateful ALUs than SP-PIFO. Exp-PIFO also needs 2.49x less SRAM and 5.75X less stateful ALUs
compared with AIFO. We also report the resource consumption of Exp-PIFO when using multiple
strict priority queues in Section A.1.

Bandwidth shares. We now report the performance of Exp-PIFO on our hardware testbed with a
3.2Tbps Netberg Aurora 710 Tofino switch [4] connected to two servers via Mellanox Connectx-5
through 100Gbps links. We use an 8-core CPU on the sender running an Intel(R) Core(TM) i7-6900K
CPU @ 3.20GHz and on the receiver running an Intel(R) Xeon(R) w7-3465X. We develop both the
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sender and receiver using DPDK version 22.11.1 [3]. We run Ubuntu 22.04.3 LTS with the Linux
kernel version 6.2.0-39-generic on both servers. We throttle the capacity of the link connected from
the switch to the receiver to 20Gbps.

We test the bandwidth split of FIFO and Exp-PIFO to four UDP flows of 20Gbps on a bottleneck
link, each having different priorities similar to [5, 31, 32]. To demonstrate Exp-PIFO’s prioritization
capabilities, we intentionally throttle the link between the switch and the receiver to 20 Gbps,
creating a controlled congestion scenario. Although the hardware supports 100 Gbps, reducing
the link capacity allows us to simulate network contention and observe how Exp-PIFO prioritizes
high-priority packets under constrained conditions. Without throttling, the effects of prioritization
would be less apparent at the full 100 Gbps line rate. We start a flow every five seconds, and among
the flows, the packets of Flow 4 have the lowest rank (highest priority), while the packets of Flow 1
have the highest rank. Figure 18 reports how FIFO and Exp-PIFO assign the bandwidth to different
flows. FIFO evenly assigns the bandwidth on the arrival of a new flow every five seconds, ensuring
fair sharing among active flows, as shown in Figure 18(a). Unlike FIFO, Exp-PIFO dynamically
allocates the available bandwidth according to the rank of the four flows, with the highest-ranking
flow dominating the link capacity. For example, during the second five-second interval, Exp-PIFO
assigns the capacity of the bottleneck link to the packets of Flow 2, which have the highest rank,
while the packets of Flow 1 experience drops. We observed that SP-PIFO and AIFO achieved similar
bandwidth shares in this experiment, and therefore, we omit the corresponding figures for brevity.

4 Related Work

Programmable packet scheduling. Packet scheduling has been widely studied by many re-
searchers [19, 27]. The authors in [27] showed that programming the scheduling mechanisms could
lead to the desired performance objective. However, the authors in [19] showed that a universal
packet scheduling mechanism that aims at several performance objectives does not exist. Eiffel [23],
Loom [28], and PIFO [27] have different approaches to aim for the desired goals of programmable
schedulers. Eiffel [23] presents a queueing data structure that approximates the fine priority of
each packet by leveraging the range of packet ranks using integer numbers. The design of the
Eiffel simplifies its computational complexities but needs new hardware to employ its benefits.
Loom [28] offers a new NIC design to offload the per-flow scheduling decisions from the OS to the
NIC. Similar to Eiffel, Loom is not a general-purpose programmable device.

SP-PIFO approximates the PIFO behavior using multiple strict priority queues. However, while
successful in concept, SP-PIFO has limited support from the current hardware in practice due to
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its design dependence on per-queue registers for the approximation. Alternatively, AIFO [31] and
RIFO [21] use a FIFO queue to admit packets based on their ranks. AIFO employs a quantile-based
approach by sampling ranks and storing them in registers, but its scalability is limited by the number
of registers available for quantile computation. In contrast, RIFO relies on min-max normalization
to support in-queue ranking with constant-time operations, reducing memory and logic overhead
in programmable schedulers. Packs [6] also relies on quantile computation to decide on packet
admission, which inherits the same limitations of AIFO.

Alternative packet schedulers. PIAS [10] concentrates on identifying the distribution of the
traffic flow sizes and uses multiple priority queues for packet admission, similar to pFabric [8].
pFabric maps packets to priority queues based on the size of the flow to which they belong. However,
while pFabric relies on a priori traffic distribution information to make this mapping, PIAS [10]
leverages Multi-level Feedback Queues (MLFQ) to achieve the Shortest Job First (SJF) goal. It
accomplishes this by identifying the flow size distribution and dynamically transitioning flows
from higher- to lower-priority queues as they transmit more bytes. Exp-PIFO has the same power
to emulate queueing algorithms as PIFO, and when we happen to instantiate it with pFabric-like
ranks, it seems to improve FCT for various traffic workloads.

Calendar queues [25] perform dynamic escalation of packet priorities to schedule packets using
packet recirculation and control plane operations. Relying on the control plane to change the priority
of every packet limits the throughput of calendar queues. Gearbox [16] and the work of [24] focus
on the fair queueing aspects of programmable networks. Gearbox [16] utilizes a logical hierarchy of
queuing levels to accommodate more packets using a few FIFO queues, allowing for discrepancies
in the departure times of various packets. The generalization of Gearbox to approximate the PIFO
queues has yet to be explored. Push-In-Extract-Out (PIEO) [26] introduced a new packet scheduling
algorithm that allows for dequeueing packets from arbitrary positions. BBQ [9] and BMW-Tree [30]
also provide a hardware implementation of PIFO queues. Nevertheless, PIEO, BBQ, and BMW-Tree
are hardware designs that work on FPGAs, with different programmability and resource models
compared to P4-based switches..

5 Conclusion

We presented Exp-PIFO, a simple and resource-efficient packet scheduler implementable on current
available programmable switches with a small resource footprint. The design of Exp-PIFO needs
just two memory cells to get insight into the rank distribution of incoming packets and enqueue
them into the appropriate queues. Leveraging these two cells makes Exp-PIFO simple to implement
and scale to support more priority queues. Furthermore, it pushes the flow completion time of
programmable packet schedulers.

Exp-PIFO implements an approximation of Push-In-First-Out (PIFO) scheduling, but rather than
focusing on improving the quality of approximation, our work focuses on implementability on
resource-constrained devices. Nonetheless, simulation results show that the performance achieved
by Exp-PIFO in terms of FCT is not only comparable to that of earlier approximations like SP-PIFO,
but even shows an improvement over strict PIFO itself. This was unexpected to us, but can be
explained from the fact that the optimality guarantees in terms of FCT for scheduling based on
shortest-remaining-flow size do not apply in the presence of finite buffer sizes and trickle flows.
Trickling may, for example, be caused by packet drops or downstream interference, which are often
occurring phenomena in high-load multi-hop networks. Even though Exp-PIFO is not explicitly
designed to exploit this fact, it appears to make favorable decisions in these cases. Furthermore,
our results suggest that Exp-PIFO adapts well to changes in the flow characteristics over time. In
our future work, we plan to study whether it is possible to structurally take trickling explicitly into
account when scheduling flows, as we expect to be able to improve on the FCT even further.
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A Appendix

A.1 Hardware Scalability with Queue Count

To evaluate the scalability of Exp-PIFO in hardware, we implemented configurations with 4, 8, 16,
and 32 priority queues on Intel Barefoot Tofino using sde-9.11.1. Table 2 reports the percentage
of each hardware resource used. Even with 32 queues, Exp-PIFO utilizes around 32% of any resource
type, demonstrating that our design scales efficiently while remaining lightweight.

Table 2. Resource consumption of Exp-PIFO with varying numbers of queues on Intel Barefoot Tofino (shown
as percentage of available hardware resources).

Resource type 4 queues 8 queues 16 queues 32 queues

Match Crossbars 2.21% 2.21% 2.01% 1.86%
Gateway 7.29% 11.46% 16.96% 27.34%
Hash Bits 3.81% 3.81% 3.21% 2.85%
SRAM 2.92% 2.92% 2.50% 2.19%
TCAM 2.08% 2.08% 1.79% 1.56%
Stateful ALUs 8.33% 8.33% 7.14% 6.25%
Logical Table IDs ~ 13.54% 17.71% 22.32% 32.03%

Received December 2024; revised June 2025; accepted June 2025

Proc. ACM Netw., Vol. 3, No. CONEXT3, Article 17. Publication date: September 2025.



	Abstract
	1 Introduction
	2 The Exp-PIFO Algorithm
	2.1 Adaptive Mapping of Rank to Priority
	2.2 Exponential Mapping and Periodic Adaptation
	2.3 The Exp-PIFO algorithm
	2.4 Tofino Implementation

	3 Evaluation
	3.1 Packet-level Simulations
	3.2 Hardware Testbed

	4 Related Work
	5 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Hardware Scalability with Queue Count


