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Abstract—Applications of Software-Defined Networking (SDN)
to the Internet Routing hold great promises for supporting the
ever-growing performance requirements of Internet applications.
The inherent centralization of these SDN approaches on the
Internet routing comes with the following concerns: 1) privacy,
the operators are reluctant to share private routing information,
2) separation of responsibilities, the Internet eXchange Point
(IXP) running the centralized controller is involved in the
routing and forwarding at too many levels, and 3) scalability, the
growing number of IP prefixes routed on the Internet (i.e.,
hundreds of thousands) pose extremely high requirements at
both the control- and data-planes, e.g., several minutes for policy
compilations and a large number of forwarding rules, in SDN. In
this paper, we propose DESI to apply SDN at IXPs by considering
the above concerns. We break this centralization by devising an
SDN-enabled IXP architecture in which each member connects
to an SDN-enabled IXP through its SDN controller and SDN
switches, thus tackling privacy, scalability, and separation of
concerns issues. To spur adoption, we introduce an expressive,
yet simple, language to configure the routing policies of the
members. Our evaluation shows that DESI needs n times fewer
forwarding table entries for an IXP in which n is the number of
IXP members. DESI also gives the possibility of slowly migrating
to the SDN-enabled IXPs.

Index Terms—Software-defined networking, IP networks,
Internet eXchange Point (IXP).

I. INTRODUCTION

MODERN-DAY Internet applications pose ever-growing

performance requirements on the Internet. Such services

require heterogeneous support for performance from the underly-

ing network, including high bandwidth [1] and low-latency [2].

Yet, the underlying network protocol used to determine the Inter-

net paths through which domains send Internet traffic, i.e., the

Border Gateway Protocol (BGP), is alarmingly oblivious to such

performance metrics, ultimately hindering performance. Unfortu-

nately, modifying BGP “overnight” has proven to be an elusive

goal because of the need to achieve some sort of wide consensus

among independent network entities. Researchers and operators

have therefore concentrated efforts to improve the status quo at

the emerging crossroads of Internet traffic, i.e., Internet

eXchange Points (IXPs), where hundreds of organizations con-

nect to exchange traffic at a reduced cost.

IXPs have traditionally acted as mere layer-2 interconnects

that transit packets among BGP-speaking networks. The Soft-

ware-Defined-eXchange (SDX) [3] is a new IXP architecture

that brings the high programmability of Software-Defined

Networking (SDN) [4] to the IXP ecosystem. Both IXP opera-

tors and IXP members program the IXP fabric through a well-

defined interface (e.g., OpenFlow [5]) to implement their rout-

ing policies. The potential impact of SDXes is huge: a recent

work [6] showed the high benefits of improved Traffic-Engi-

neering, security, traffic monitoring, network management,

and more. Yet, the most notable SDX architecture, i.e.,

iSDX [7], comes with a variety of concerns. First, several

iSDX architectures collect all the members’ routing policies

in a central controller owned by a third entity. Typically, the

IXP members do not want to disclose these routing policies to

the IXP. These policies dictate how packets should be routed

at the IXP and therefore reveal potentially business informa-

tion that is deemed confidential [8]. Second, SDXes solutions

that install the forwarding policies of different IXP members

on the same physical device (e.g., iSDX) may exacerbate any

dispute regarding the separation of responsibility in case of

failures in delivering traffic. In fact, traditional Layer-2 IXPs

separates the responsibility of IXPs, i.e., transporting traffic

between two statically configured MAC addresses, from

selecting the routes through which sending traffic, which is

left to the operators and does not involve any computation on

a third-party entity (e.g., the SDX controller). Third, solutions

that install forwarding state in the IXP fabric tend to scale

poorly in the number of members and configured policies due

to the current hardware constraints [9].

We argue that an SDX architecture must satisfy the follow-

ing requirements. First, privacy, i.e., the routing policies of

the IXP members should not be disclosed to any unintended

third party, including the IXP itself. Second, separation of

responsibility, i.e., identifying who is responsible for what.

Third, forwarding state scalability, i.e., the IXP fabric should

scale to the number of members, minimizing the amount of

state stored in the IXP fabric.
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In this paper, we present our envisioned architecture for

SDXes, called DESI, that satisfies all of the above require-

ments. We argue that IXPs should not be involved in the route

computation among members. Instead, in DESI, IXP members

connect to the IXP with their SDN-enabled equipment, includ-

ing an SDN switch to be connected to the SDX fabric as well

as an SDN controller to configure the switch and coordinate

with other IXP members. The proposed approach to the design

of SDX architectures comes with huge benefits in terms of pri-

vacy (policies are stored locally), separation of responsibilities

(IXPs are not involved in the route computation), and forward-

ing state scalability (each IXP member only stores its forward-

ing state). DESI overcomes the scalability limitation of current

SDN-based IXPs by designing a scalable architecture that

allows the members to handle their forwarding states.

DESI has a decentralized architecture in which the tasks of

the IXP controller are distributed among the SDN controllers

of the members. The controllers of IXP members in DESI use

two complementary mechanisms to install the forwarding state

to scale the forwarding state. Through a proactive approach,

an IXP member installs the whole forwarding state regardless

of whether some rules are never matched by actual data pack-

ets. This approach has the benefit of quickly handling the

incoming traffic but may result in overly large forwarding

tables whose size may not be supported by the underlying

SDN hardware.1 Through a reactive approach, the DESI con-

troller installs a forwarding rule only after a packet matching

that rule is received by the SDN switch. With this approach,

an operator limits the amount of forwarding state needed to

support the defined forwarding rules but introduces additional

latency and controller load overheads for each packet. DESI

relies on a combination of these two approaches to achieve

forwarding state scalability. Finally, we introduce an expres-

sive policy language, inspired by Pyretic [10], that can be

used by the IXP members to define their routing policies.

We evaluated our system to assess its practical feasibility.

We observed that the most critical resource of DESI, i.e., the

member controller, scales well in the number of policies and

BGP announcements being installed.

The rest of the paper is organized as follows. Section II

reviews the most relevant contributions for the application of

SDN to the inter-domain routing and IXPs. In Section II-B we

briefly illustrate the current SDX-based architectures. In

Section III we present the architecture of DESI. Section IV

shows our routing policy model. Section V introduces the

reactive and proactive approaches, explaining the main differ-

ences between them. Section VI describes the architecture of

our SDN-controller and Section VII states several applicabil-

ity considerations. In Section VIII, we show the results col-

lected during the evaluation of our SDN-controller.

Discussion come in Section IX. Finally, Section X concludes

our paper and discusses the research perspectives opened by

our proposal.

II. RELATED WORK AND BACKGROUND

In this section, we review the state-of-the-art Software

Defined Internet eXchange points and SDX-based IXP archi-

tectures. We also discuss some of the works on the application

of SDN to inter-domain routing, limiting the scope to those

that are more related to IXPs.

A. Related Work

An IXP can be seen as a Layer 2 (L2) interconnection net-

work through which IXP member networks connect and

exchange routing information using BGP.

SDX [3] is the first attempt to apply SDN to the inter-

domain routing inside IXPs. In SDX, standard BGP out-

bound policies, i.e., policies used to apply on outgoing

traffic, are overridden by an SDN controller, improving the

flexibility of the BGP protocol. The most relevant SDX

contribution consists in replacing the IXP switching fabric

with an SDN-capable switch handled by a centralized con-

troller which collects policies from all the members, com-

piles them, and installs the forwarding state into the SDN

capable switch that implements the members’ routing

policies.

SDX suffers from scalability problems [7] in terms of con-

trol plane computation time and the number of generated for-

warding rules. Those issues are addressed by an improved

version called industrial-SDX (iSDX) [7]. Despite its

improvements in scaling the forwarding plane, iSDX still

requires exposing the routing policies to the centralized con-

troller and still requires installing too many forwarding

rules [9].

Hermans et al. [9] report that currently employed switch

platforms by the AMS-IX are incapable of supporting iSDX

because of the current hardware limitations. Also, the policy

compression mechanism of iSDX and the frequency of BGP

updates in the memory for large IXPs require further

investigation.

Endeavour [11] reduces the number of installed rules on the

SDN-enabled switch of an IXP switch fabric (70% less than

those of SDX and iSDX). Endeavour is built on top of

SDX [3], iSDX [7], and Umbrella [12]. It proposes a new

architecture for an IXP switch fabric which is composed of

edge and core switches. The rules are installed on edge

switches, while the core switches are in charge of forwarding

traffic to its designated egress points. This architecture helps

to improve the scalability of IXP fabric even if it adds duplica-

tion in the forwarding state while installing the inbound and

outbound routing policies of the participants. The proposed

architecture introduces a mechanism to check (possible)

dependencies among the forwarding rules.

Umbrella [13] improves the switching fabric of IXPs by

introducing edge and core switches. The edge switches have

OpenFlow capabilities in rewriting the layer-2 destination

fields whereas the core switches are legacy switches. The pri-

vacy and separation of responsibilities of the controller are

major concerns because IXPs have been traditionally neutral

entities and provide L2 forwarding. Even large IXPs that

1SDX routing policies rely on wildcard matching, thus requiring TCAM
support from the underlying SDN switch. TCAM space is often limited due to
being a power-hungry and expensive resource.
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deploy Route Servers do not have access to the private policies

of the IXP members.

In contrast to SDX, iSDX, Umbrella, and Endeavor, our

architecture does not replace the IXP switching fabric with

an SDN-based one. Indeed, we introduce SDN only on the

ISP side, without forcing other members to be equipped

with an SDN controller. Finally, we preserve backward

compatibility with providers that are not interested in using

SDN on their side. Table I shows the features offered by

each solution.

B. SDX Based IXP Architectures

This subsection describes the typical architecture of an

SDN-based IXP (we mainly concentrate on the latest version

of SDX, which is called iSDX [7]) discussing the main com-

ponents and explaining their functionalities. Since DESI builds

upon similar forwarding ideas of iSDX, though a completely

different architecture, we now introduce details about the

iSDX forwarding mechanisms.

1) Components: The main components of the architecture

are the following.

1) An SDN-enabled switch. To program the switching fab-

ric of an IXP, there is the need for at least one SDN-

enabled switch. It is the collector of the policies of all

the ISPs that participate in the IXP.

2) A BGP route server. Currently, the most important IXPs

offer a route server. An ISP can substitute its bilateral

peerings with just one peering with the route server. The

route server computes the best routes to reach the target

prefixes and redistributes such routes to the ISPs. The

iSDX route server is implemented with ExaBGP [14].

3) An IXP controller. The controller cooperates with the

route server to integrate the BGP policies with custom

outbound and inbound policies.

4) The members’ SDN-controllers. Each participant in the

IXP can have its SDN-controller that shares part of the

computations performed by the IXP controller. This

improves the scalability of the architecture.

5) The Members’ border routers. Each member runs (at

least) one border router to exchange BGP messages

with the router server. The route server can check the

BGP reachability information of each member by

checking the BGP update messages that come from

these devices.

2) SDX and iSDX Architectures: SDX was the first attempt

to bring SDN to inter-domain routing, but it does not scale for

the following reasons: 1) it generates many SDN rules to han-

dle traffic and currently available TCAM size for SDN-

enabled switches is not able to maintain them [9] and 2) the

computation time to generate low-level forwarding table

entries from high-level forwarding policies, which may

change the forwarding behavior of BGP [7], is high.

There are two key design improvements in iSDX to the

original SDX proposal. First, the control plane computations

of iSDX are partitioned among the participants’ controllers to

ensure that the routing policies of a participant remain inde-

pendent from the others. Second, the BGP and the SDN poli-

cies are kept separate. This avoids the recomputations that can

be triggered when new updates are received. Once the control

plane computation is carried out, a forwarding equivalence

class (FEC) for each member is created to allow the forward-

ing of the traffic. For this goal, the reachability information is

encoded inside a tag that is stored inside the destination MAC

address field of the packets’ header. To do so, the multiple

match-action tables feature of an OpenFlow-enabled switch is

leveraged. iSDX uses one table for inbound and one for out-

bound policies of each participant. A virtual MAC address is

used to encode the reachability information [7].

3) Limits of the Existing SDX Architectures: Although the

proposed architectures are the result of deep and sophisticated

research work, up to now very few IXPs have adopted SDX or

iSDX technologies (just one IXP is based on SDX [11]) due to

the hardware limitations [9]. However, in our opinion, the fol-

lowing main concerns [15] should be considered.

The first issue is the privacy of routing policies. Current

architectures do not offer a guarantee on the privacy of the

policies of the participants. Both the IXP SDN-controller

and the Route Server have shared equipment. Anybody that

is allowed to enter such machines can access information

that can unveil (totally or partially) the policies of the

members [16].

A second issue is that the proposed architectures do not

allow to separate and identify who is responsible for what in

case of failure in traffic delivery. Namely, in a traditional IXP,

the center of the architecture is a basic layer-2 switch, with

limited intelligence and limited capabilities (in large IXPs this

is substituted by more complex layer-2 switch fabric; how-

ever, its overall behavior is the one of a simple switch). This

allows, in case of problems, to separate the responsibility of

TABLE I
COMPARISON OF SDN-BASED SOLUTIONS FOR INTER-DOMAIN ROUTING
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members and the responsibility of the IXP. In SDX and iSDX,

the central SDN-enabled switch and the IXP controller are

sophisticated machines where the policies of all participants

are mixed into a unique container. This avoids having a clear

boundary between the ISPs and the IXP. For example, when

an Ethernet frame crosses the iSDX fabric, the validity of the

policy is checked using the encoded reachability information

on the Ethernet header. The iSDX ignores the frame if the

encoded reachability information is unreachable.

A third issue is scalability. Integrating into a unique switch

the policies of a large-size IXP can be unfeasible due to the

current hardware limitations [9].

III. A NEW SDN ARCHITECTURE FOR

INTERNET EXCHANGE POINTS

In this section, we describe our architecture for an SDN-

based Internet eXchange Point. We point out the main differ-

ences between SDX and DESI to show how we overcome the

limitations imposed by the SDX architecture. DESI distributes

the operations of the SDX controller to those of members

using a decentralized architecture.

Our architecture is depicted in Fig. 1. Each provider joins

the IXP with its SDN-enabled switch and its own SDN-con-

troller. In the figure, there are three providers, whose names

are ISP1, ISP2, and ISP3. They are connected to the IXP

peering LAN by means of SDN-enabled switches, which are

called OF1, OF2, and OF3. Each SDN-enabled switch is han-

dled by a specific SDN-controller, namely C1, C2, and C3.

Such an architecture does not impose any limitations on the

possibility for a provider to be interconnected to multiple

IXPs. We provide more details about this scenario in

Section VII.

In Fig. 1, routers R1, R2, and R3 are IP-speaking devices

directly connected, on a specific port, to the SDN-enabled

devices and they represent the whole network of each pro-

vider. Note that the IXP switch fabric is not SDN-based. We

decided to move SDN capabilities inside the network of each

provider. This choice has two advantages: first, policies are

not stored anymore in a centralized place; second, each pro-

vider independently acts on its SDN-enabled device, still hav-

ing the flexibility offered by SDN, but avoiding the possibility

of compromising the policies of any other IXP member con-

nected to the IXP.

Still referring to Fig. 1, while the bold lines are physical

connections, the dotted ones represent BGP peerings. This is

another change we introduce. We assume that the peerings are

established between SDN-controllers to allow each provider

to be as flexible as possible. The most valuable benefit is that

it aligns with the current practices of establishing bilateral

BGP peerings at IXPs [6], which preserve privacy and

enhance visibility into BGP multiple routes.

Another consideration regarding the choice of publicly

exposing the controller on the peering LAN. We argue that

such a situation is not dangerous for IXP members, for two

reasons. First, the peering LAN is typically assumed to be

trusted; second, only the BGP speaker component of the

SDN-controller is publicly exposed on that LAN.

IV. A ROUTING POLICY MODEL

In this section, we describe our routing policy model, which

is based on a language allowing each provider to forward traf-

fic along multiple paths. Also, we discuss the semantics of our

language, highlighting its main properties. Then, we describe

the covering problem.

A. Policy Language

Our language does not replace the BGP configuration of

members for outbound and inbound policies, i.e., the outbound

and inbound policies are BGP filters that determine a set of

prefixes that a member desires to receive or send traffic to

them. Rather, it can be used in conjunction with the BGP pol-

icy specification language to extend the standard BGP capabil-

ities. So, the backward compatibility with standard BGP

speakers is preserved. The policy language provides a high-

level abstraction for the members to write their routing poli-

cies without worrying about the low-level implementation of

them in OpenFlow. Also, we do not exploit Pyretic [10], since

it is based on the POX controller and it imposes constraints on

the controller to use, while our proposal is more general.

We now introduce the model that represents the building

block on which we build our language. Table II illustrates the

notations used in our policy model.

We model the IXP as the set of the ISPs connected to the

IXP itself. Let B � I � I be the set of all the BGP peerings

established at the IXP. Given any two providers i1; i2 2 I , we

TABLE II
TABLE OF NOTATIONS

Fig. 1. Our architecture in which SDN is moved in the provider’s side to
avoid policies sharing and to easily identify responsibilities.
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say that i1 and i2 establish a BGP peering if and only if

ði1; i2Þ 2 B. All the BGP neighbors of an ISP are modeled as a

set: 8i; j 2 I , if ði; jÞ 2 B, then j 2 N i � I and i 2 N j � I ,
namely j belongs to the set of all the BGP neighbors of i and i
belongs to the set of all the BGP neighbors of j, respectively.
Finally, given two ISPs i; j such that j 2 N i.

Policies: Policies are the main building block of our lan-

guage. A policy determines how to route traffic through the

Internet. Each provider specifies a set of policies. Given a pro-

vider i 2 I , Pi is the policy set of i. We define a policy p 2 Pi

as a pair p ¼ hmatch! neighborsi.
Match part of a policy. The match is a (possibly empty)

expression. The operators of the expression are the logical

operators AND (^) and OR (_). In our language, expressions

including the AND operator are evaluated before those

including the OR operator. Thus, an expression consists of a

set of logical operators and atomic elements. The atomic ele-

ments of the expression are relational conditions in the form

atom ¼ value. Each atom is an element of the quadruple

hsrcip; dstip; srcport; dstporti, where: 1) srcip is a source

IPv4 or IPv6 address; 2) dstip is a destination IPv4 or IPv6

address; 3) srcport is a source TCP or UDP port; and 4)

dstport is a destination TCP or UDP port. None of the ele-

ments is mandatory: a policy p without any match condition,

i.e., M(p), means all the traffic. Note that MðpÞ can be

extended by including any matchable field defined in the

OpenFlow specification [5].

Neighbors of a policy. The neighbors part of the policy p 2
Pi is a list of neighbors N p � N i, that are candidates to

receive the packets that match the policy. If a policy contains

more than a neighbor, then the priority to send the matched

packets is based on the precedence. The neighbor with higher

precedence in N p has the highest priority to receive the pack-

ets. We assume that a single type of action exists within each

policy whose semantic is: (potentially) forward to a neighbor.

This assumption is not restrictive since our language does not

replace the BGP policy specification.

Example. We now state an example of our policy language.

Referring to Fig. 1, suppose that ISP1has two BGP peerings,

one with ISP2 and another one with ISP3 (this is made pos-

sible by the interconnection with the standard IXP fabric

switch), and suppose that it wants to send a portion of its out-

going traffic to ISP2 and another portion to ISP3, according

to some field of the packet header. By using a standard BGP

policy specification language, this is not feasible, since BGP

computes a single best path and all the traffic is forwarded

along that path.

Given ISP1; ISP2; ISP3 2 I and ISP2; ISP3 2 N ISP1,

consider the following policies p1; p2 2 PISP1:

p1 ¼ hdstip ¼ 20:1:2:0=24 ^ dstport ¼ 80! ðISP2; ISP3Þi
p2 ¼ hdstport ¼ 21 _ dstport ¼ 22! ðISP3Þi
Also, consider a prefix p ¼ 20:1:2:0=24 such that p 2 PISP2

ISP1

and p 2 PISP3
ISP1. The semantic of p1 is: send all the traffic whose

destination IP address falls in the subnet 20.1.2.0/24 and whose

destination port has value 80 to ISP2. Else, (either ISP2does

not announce that prefix or it is not reachable for temporary

connectivity problems), send that traffic to neighbor ISP3. The

semantic of policy p2 is: send all the traffic whose destination

port has value either 21 or 22 to neighbor ISP3. Observe that

p1 and p2 use a subset of the available atoms. If not specified

in the policy, an atom is considered as wildcard. Also, the

BGP routing must support the traffic forwarding through

the neighbors specified in the actions part of the matched

policy.

Note that policy p1 allows the traffic to be forwarded to

ISP2 even if ISP2 is not the best choice for BGP. To send

that traffic to ISP2 it is enough that ISP2 announces prefix

20.1.2.0/24. We augment the semantics of a policy by implic-

itly stating that if none of the neighbors specified in the action

announces the prefix mentioned in the match, then the traffic

is forwarded according to the BGP computation, even if the

neighbor to which the traffic is being forwarded is not men-

tioned in the actions part of the policy.
Policy priority. Our language allows for a double level of

priority level. Indeed, the first level is expressed inside the pol-

icy when multiple neighbors are defined in the actions list, as
reported in policy p1. In that case, forwarding traffic to neigh-

bor ISP2 has higher priority than forwarding traffic to neigh-

bor ISP3. The second priority level is among policies. In the

example, policy p1 has higher priority than policy p2. This
means that policy p1 must be checked always before policy p2
and the latter one can be considered by the SDN controller if

and only if traffic cannot be forwarded according to policy p1.
Hence, the policy priority levels are defined by the order of

the policies themselves. Such an ordering might lead to a

problem that we call Covering Problem.

B. The Covering Problem

As we just said, the order of the policies defines their prior-

ity. A naive installation of the rules may lead to certain situa-

tions in which some rules will never get matched. This SDN

update problem has been first observed in [17]. This circum-

stance might happen due to human error, and also, it can hap-

pen either in proactive or reactive approaches. Before the

formal definition of this problem, we show it with an example

in Fig. 2. Referring to Fig. 1, suppose that ISP1 wants to for-

ward traffic with dstport ¼ 80 to neighbor ISP2 and traffic

with dstport ¼ 80 and the source IP address falling in the sub-

net 2:0:0:0=8 to the neighbor ISP3. The ISP1’s network

administrator might write the following two policies:

p1 ¼ hdstport ¼ 80! ðISP2Þi
p2 ¼ hdstport ¼ 80 ^ srcip ¼ 2:0:0:0=8! ðISP3Þi
Also, suppose that both ISP2 and ISP3 send BGP

announcements for the same IP prefix p. Now, suppose that

two flows must be forwarded according to those policies. In

particular, the flows have the following (portion of the) header:

f1 ¼ hsrcip ¼ 1:0:0:1; dstip ¼ 3:0:0:1; srcport ¼ 10;
dstport ¼ 80i
f2 ¼ hsrcip ¼ 2:0:0:1; dstip ¼ 3:0:0:1; srcport ¼ 11;

dstport ¼ 80i
and the IP address 3.0.0.1 belongs to the announced IP pre-

fix p, so that it can be reached through ISP2 or through

ISP3.
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In the intention of the ISP1’s network administrator, flow

f1 must be forwarded according to policy p1, whereas the flow
f2 must be forwarded according to policy p2. Suppose that the
first packets that arrive belong to f1. Then, the SDN controller

selects policy p1, installing into the open-flow switch the cor-

responding OpenFlow rule. Upon receiving the flow f2, the
SDN-enabled switch already has the rule to use. Hence, that

flow is forwarded according to the OpenFlow rule installed

after the selection of policy p1, resulting in a policy misusage.

We call such a problem Covering Problem, since policy

p1covers policy p2, preventing its selection.
In contrast to [18], we do not aim at finding dependencies

for performance purposes. Indeed, we aim at guaranteeing that

the forwarding is performed according to what an ISP wants

to achieve.

Before formally showing the Covering Problem, we define

the priority of a policy: given i 2 I and p 2 Pi, prðpÞ is the
priority value of p.
Definition. Given i1; i2; i3 2 I and p1; p2 2 Pi1 such that

prðp1Þ > prðp2Þ, we say that p1 covers p2 if the following

two conditions are satisfied: 1) Pi2
i1

TPi3
i1
6¼ ; and 2)

Mðp2Þ �Mðp1Þ.
Roughly speaking, the Covering problem states that, given

any two policies of the same provider, the policy with the

higher priority value must be the policy with the largest match

condition set, if one of the two policies has the match condi-

tion set that fully includes the other. Note that the Covering

problem does not occur if the match condition sets of any two

policies partially overlap.

To overcome the covering problem, it is enough to give

higher priority to the covered policy (p2 in the example). This

results in writing the policies (p1 and p2) in the reverse order.

Hence, given i 2 I , we say that the set Pcf
i ¼ fp2; p1g is the

set of cover-free policies, where:

p2 ¼ hdstport ¼ 80 ^ srcip ¼ 2:0:0:0=8! ðISP3Þi and
p1 ¼ hdstport ¼ 80! ðISP2Þi
Note that: 1) the policies set Pcf

i is not affected by the cov-

ering problem, and 2) such a new policies order makes

prðp2Þ > prðp1Þ. If the order of the policies induces a cover-
ing problem, DESI must arise a notification, without undertak-

ing any specific action (e.g., by executing any re-ordering

algorithm for the policies). This means that this problem does

not depend on the BGP announcements, since it is only a static

check of the policies.

V. FROM POLICIES TO FORWARDING RULES

After a computational process inside the SDN controller, a

policy is translated into one or more suitable forwarding rules

to be installed inside each SDN-enabled switch (e.g., Open-

Flow rules). Such rules allow the device to forward the traffic

to the proper neighbors.

First, we clarify the difference between policies and for-

warding rules. A policy represents a high-level way to declare

how traffic must be routed in the network while a forwarding

rule is the translation of that policy resulting in suitable data

structures on the SDN-enabled switches. In our case, each pol-

icy is translated into one or more OpenFlow rules. More

details are given in Section VIII.

We present two approaches namely, Reactive Approach and

Proactive Approach. The first one performs the translation

from policies to the forwarding rules when the traffic reaches

the switch, whereas the latter one computes such a translation

before any packets reach the device. We explain the benefits

and drawbacks of each approach.

Memory cost. The proactive approach reduces the packet

waiting time at the switch. However, it comes with extra mem-

ory cost to store the flow table entries. While the reactive

approach overcomes this problem by installing the necessary

forwarding rules in the forwarding tables.

There are no limitations in adopting one of the two

approaches under different conditions. We describe the details

of those approaches in the following.

A. The Reactive Approach

In the reactive approach, several conditions must be taken

into account. First of all, there could be dependencies among

policies. If such a situation happens, the SDN-controller must

be able to detect it and acts properly. To support that task, we

define the Dependency Graph which is a graph modeling spe-

cific relations among policies.

The Dependency Graph

This subsection describes the dependencies among the poli-

cies and an approach to detect it.

The policies set Pcf , shown in Section IV, is not affected by

the covering problem. However, this policy set might be

affected by another issue. Suppose that a traffic flow matching

the policy p2 (e.g., dport ¼ 80) reaches the SDN-enabled

switch and there is no suitable rule in the forwarding table of

the switch to match that flow. According to the reactive

approach, a packet of that flow is sent to the controller asking

for the suitable policy to apply. After selecting the policy p2
and translating it into a forwarding rule, the SDN-enabled

switch can route the packets.

Problem. Suppose there is a rule on the SDN-enabled switch

to handle the traffic matching the policy p2 (e.g., dport ¼ 80).
Now, a new traffic flow arrives at the same SDN-enabled switch

Fig. 2. An example of the covering problem with two policies. The control-
ler installs the OpenFlow rules of p1 first and all packets belonging to f1 and
f2 are forwarded by p1 due to covering problem.
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and it has still in the header of the packets the value dstport ¼
80, but the source IP address now falls in the subnet 2:0:0:0=8.
This traffic flow must be forwarded according to the policy p1,
but it is not, since that traffic flow matches the previously

installed forwarding rule (e.g., the rule obtained from the policy

p2). Fig. 3 illustrates such a situation. Through this very simple

example, it is evident that two policies, or more, might depend

on each other. In particular, this is true when a lower priority

policy is matched before a higher one.

Solution. To find the dependencies among the policies, we

introduce the concept of Dependency Graph.

Definition. The dependency graph is a directed graph G ¼
ðV;EÞ modeling dependency relationships among the policies,

in which: 1) V is the set of vertices. Each vertex represents a

policy. Hence, we say that V ¼ P , and 2) E is the set of the

edges. Each edge is a pair hv1; v2i where v1; v2 2 V . Since the

graph is oriented, the pair hv1; v2i represents an edge from v1 to
v2. Given a set of policy P , the dependency graph for that set

of policy is a graph G ¼ ðP;EÞ where P is the set of the verti-

ces, each of which models a policy, and 8pi; pj 2 P where i 6¼
j, hpi; pji 2 E if and only if the two following conditions are

satisfied: 1) PrðpiÞ < PrðpjÞ and 2)MðpiÞ \MðpjÞ 6¼ ;.
We now state an example to show how a dependency graph

is built for a given set of policy Pcf . The graph G ¼ ðPcf ; EÞ
is the dependency graph for the set Pcf , where Pcf ¼
fp1; p2g, and E ¼ fhp2; p1ig. In fact, Prðp2Þ < Prðp1Þ and
Mðp2Þ \Mðp1Þ ¼ hdstport ¼ 80i. The conditions for the set

of policy Pcf are satisfied which result is having a dependency

among fp1; p2g.
We highlight that the covering problem and the dependency

graph address two different problems, but complementary. In

particular, the covering problem is the problem of a higher

policy which prevents the selection of a lower one, whereas

the dependency graph is a data-structure aiming at avoiding to

forward the traffic according to a lower priority policy in place

of a higher one if present. Alg. 1 builds the dependency graph.

After building the dependency graph, the SDN-controller is

now able to produce the suitable set of forwarding rules that

allow the traffic to be forwarded without any mistakes. This

step is called Expansion Process and we explain it in the

following.

The Expansion Process

In this section, we describe how the policies are translated

into forwarding rules. We explained in Section IV that our

routing policy model uses two operators: AND and OR.

Since the match part of an OpenFlow flow entry can be seen

as a sequence of match conditions evaluated by using the

AND operator (e.g., a packet matching all the fields speci-

fied in the match condition), we start our explanation by con-

sidering a policy whose match part consists of a set of

matching conditions using the AND operator. After that, we

show how policies including the OR operator are translated

into an equivalent set of policies that only use the AND
operator.

As the first step of the expansion process, we build a tree for

each policy in which the parent node in the tree indicates the

used operator and the leaves of the tree show the match fields.

Fig 4 depicts an example of such a representation. Then, we

run the Depth-First Search (DFS) algorithm on the tree to cre-

ate the forwarding rule to install on the device.

According to Section IV, we consider wildcard (�) for all
the other match conditions which do not explicitly appear in

the policy itself, and we assume them in AND with all the

other match conditions.

Relying on this representation, we are now able to represent

a policy containing the OR operator into a set of policies only

containing the AND operator. Consider the policy:

p ¼ hdstport ¼ 21 _ dstport ¼ 22! ðnÞi
According to the representation, we build the tree shown in

Fig. 5. We run the DFS algorithm on this tree. Each time a

node containing an OR operator is visited, a new sub-policy is

created. By doing so, the policy p leads to two policies p0 and
p00 that only contain the AND operator. In particular, those

two policies are:

Algorithm 1. Creating dependency graph among the policies

1: Input The set of policies (P ) for a controller

2: Output The set of dependent policies.

3: procedure CreateGraph

4: state all policies asMðpÞ
5: for each p 2 P do

6: create a vertex for each policy p
7: end for

8: MðpiÞ  match fields of vertex i

9: MðpjÞ  match fields of vertex j

10: for i=1 to jP j do
11: pick a policy p
12: pick corresponding vertex for p
13: for j=1 to j < i do
14: pick the policy for vertex j

15: ifMðpjÞ �MðpiÞ then
16: add an edge from vertex i to vertex j

17: else if ðMðpjÞ+MðpiÞÞ ^ ðMðpjÞ \MðpiÞ 6¼ ;Þ then
18: add an edge from vertex i to vertex j

19: end if

20: end for

21: end for

22: end procedure

Fig. 3. An example of rule dependency. The controller installs the OpenFlow
rules of p2 first and all packets belonging to f1 and f2 are forwarded by p2
due to rule dependency.
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p0 ¼ hdstport ¼ 21! ðnÞi
p00 ¼ hdstport ¼ 22! ðnÞi
To better clarify the presence of wildcards and operators, p0

and p00 can be seen in the following way:
p0 ¼ hsrcip ¼ � ^ dstip ¼ � ^ srcport ¼ � ^ dstport ¼

21! ðnÞi
p00 ¼ hsrcip ¼ � ^ dstip ¼ � ^ srcport ¼ � ^ dstport ¼

22! ðnÞi
As the second step of the expansion process, we actually

expand the policy. This includes checking the policy with

BGP routing information. To do that, we need to interact with

the BGP Routing Information Base (RIB). Indeed, once a

packet arrives at the switch, a policy is selected. Then, we

check whether there is an entry in the BGP RIB allowing that

packet to be forwarded according to the action part of the pol-

icy. If so, the policy is expanded. This means that, if no desti-

nation IP address is specified in the matching part of the

policy, that IP address is added, after a lookup in the RIB. We

describe it in more detail.

Suppose that a packet matching policy p arrives at the SDN-

enabled switch, whose destination IP address is p. Since no

destination IP address is specified in p (dip ¼ �), that value
must be specified, to avoid a possible mismatch with other for-

warding rules. So, a lookup in the BGP RIP is carried out,

checking whether p 2 PðnÞ. If it is the case, the policy p is

expanded by setting dip ¼ p. Hence p becomes:

p ¼ hðdstport ¼ 21 _ dstport ¼ 22Þ ^ dstip ¼ p! ðnÞi.
The expansion process represents the last step resulting in

the creation of a set of forwarding rules. Algorithm. 2 shows

the pseudo-code of the expansion process.

Time complexity of Algorithms. Algorithm 1 creates a ver-

tex for each policy p in OðpÞ. Then, it has to check the depen-

dency among all the policies which needs Oðp2Þ. Therefore,

the overall time complexity of this Algorithm 1 is Oðp2Þ.
Algorithms 2 uses the binary search tree (BST) to create the

graph which needs OðV Þ for insertion and search. This algo-

rithm uses DFS tree traversal, which runs in OðjV j þ jEjÞ.
However, we need OðRÞ to check the p in BGP RIB. Consid-

ering p policies, Algorithms 2 requires OðpjV j þ pjEjÞ to

complete the forwarding rule generation.

B. The Proactive Approach

In the proactive approach, all the policies are translated into

forwarding rules before the traffic flows reach the SDN-

enabled switch, namely during the startup phase of the SDN-

controller. Fig. 6 shows the flowchart of this approach.

Fig. 4. Tree representation of a policy only containing the AND operator.

Fig. 5. Tree representation of a policy containing the OR operator.

Algorithm 2. Policies expansion

1: Input The set of policies (P ) for a controller, PðnÞ IP prefixes

announced by member n
2: Output The set of forwarding rulesR
3: procedure ExpandPolicy

4: R ¼ ;
5: for each p 2 P do

6: create a tree fromMðpÞ
7: if root of tree is ^ then

8: create a rule r for the tree
9: R ¼ R S

r
10: else if root of tree is _ then

11: for each child of root do

12: create a rule r for each child
13: R ¼ R S

r
14: end for

15: end if

16: end for

17: for each r 2 R do

18: lookup p in BGP RIB

19: if p 2 PðnÞ then
20: set r:dstip=p
21: end if

22: end for

23: end procedure

Fig. 6. The flowchart of the proactive approach.
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As reported in Section II-B, iSDX relies on the destination

MAC address to encode all the reachability information,

namely the set of neighbors in which a flow can be sent. We

rely on the same encoding iSDX implements, but we exploit

the OpenFlow metadata registry [19]. It has two advantages:

first, we can encode more information, since the metadata con-

sists of 64 bits and future architecture may provide even larger

metadata fields while MAC addresses will be limited to 48 bits.

Second, since we do not change the destination MAC address,

we do not need to inject additional ARP traffic in the network

reducing the overhead of the whole IXP’s peering LAN.

Now, we show how we exploit the OpenFlow metadata to

encode network reachability information. We assume that:

1) the BGP RIB table is ordered based on the announced

IP prefixes;

2) the metadata is a pair hID;maski and they have the

same length. This assumption is supported by the Open-

Flow specification [19].

We use two OpenFlow tables to forward traffic according
to the policies defined at the SDN-controller.

Fig. 7 shows an example of how we encode the network

reachability information in the OpenFlow metadata. To do

that, we rely on several sets. Each element of these sets is an

ID, namely a value that uniquely identifies a provider (e.g.,

the Autonomous System number). For simplicity, we assume

that the metadata is 5 bits length so that each IDs set exactly

contains 5 elements as well which will be used as the mask.

The proactive approach consists of three steps: 1) building

the set of IDs that are used to populate the metadata registry.

2) filling the OpenFlow Table 1, and 3) filling the OpenFlow

Table 2. First, we build a set of IDs sets from the BGP RIB

table in Fig. 7 to fill the content of the destination IP field of

OpenFlow Table 1. Then, DESI fills the metadata field of

Table 1 by setting the IDs. Finally, the values of the metadata

column of OpenFlow Table 1 and the corresponding masks

field are filled in the metadata column of OpenFlow Table 2.

Here, DESI uses the other match fields of the rule to forward

the traffic to the corresponding ISP. We now explain the

encoding steps in more detail.

First, our controller starts to scan the BGP RIB table. It

finds that provider ISP1 announces the prefix 10:0:0:0=8. So,
the first set, called ID1, is created and the first element of that

set is ISP1. Still scanning the BGP RIB table, ISP4 announc-

ing 10:0:0:0=8 is the second entry found. Since we have space

in the set ID1 (4 bits are still available), ISP4 is included in

that set. Such a process continues until the set ID1 is full. This

condition happens when reaching the BGP RIP entry number

9. Once entry number 10 is being scanned, a new ISP is found,

namely ISP20. Since the set ID1 is full a new set called ID2 is

created and the bit in position one corresponds to ISP20. This

is the first condition that triggers the creation of a new ID set.

The second condition that triggers the creation of a new set is

the following. If a prefix is announced by two or more pro-

viders that are already inside two or more IDs sets, then a new

ID set is needed. Such a condition applies when scanning lines

14 and 15 of the BGP RIP table. Indeed, the prefix 18:0:0:0=8
is announced by providers ISP1 and ISP20. Since ISP1 is in

set ID1 and ISP20 is in set ID2 (because of prefixes

10:0:0:0=8 and 14:0:0:0=8, respectively), a new set, called

ID3, is needed. The first step is accomplished.

The second step, namely filling the OpenFlow Table 1, is

carried out. The first OpenFlow table contains an entry for

each prefix in the BGP RIB table. Each entry is associated

with a metadata value that is built in the following way: there

is a bit set to 1 for each provider that announces the prefix.

The choice of which bit is set to 1 depends on the position of

the ID in the set. As an example, consider the first entry of the

OpenFlow Table 1. Prefix 10:0:0:0=8 is announced by ISP1,

ISP4, ISP5, ISP8. Since those providers belong to the set ID1,

the metadata value for the considered prefix is 11 110.

Finally, the third step, namely filling the OpenFlow Table 2,

is accomplished. This step involves the policies defined at the

Fig. 7. Example of how to use metadata to encode network reachability information.
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controller. Indeed, there is an entry for each policy defined.

Consider the policy:

p1 ¼ hdstport ¼ 80! ðISP5Þi
and a traffic flow:

f1 ¼ hsrcip ¼ 1:0:0:1; dstip ¼ 10:0:0:1; srcport ¼ 10;
dstport ¼ 80i

then an entry is built in the following way: since the destina-

tion falls in the subnet 10:0:0:0=8 and this subnet is announced
by providers ISP1, ISP4, ISP5, and ISP8, the metadata 11 110

must be used. Since the policy p1 must be taken into account

and the metadata value does not give any information about

which neighbor the traffic must be forwarded to, a mask is

needed. The policy p1 has ISP5 in the action atom, the mask

00 100 is used to forward the traffic. This process results in

the creation of the first entry for the OpenFlow Table 2 in

Fig. 7. After the last forwarding rule is installed because of a

policy, this table contains the rules for forwarding the traffic

simply according to the BGP best paths. We recall that this is

the forwarding rule we apply whether the incoming traffic

does not match any policies or whether the BGP routing does

not allow the traffic to cross the neighbors specified in the

action part of the policies. Note that a complete reset of for-

warding tables happens when the policy change affects all the

other policies of a member. Otherwise, the routing entries of

the changed policies are re-computed and the affected Open-

Flow forwarding rules are updated in the forwarding tables.

Link failure. We rely on the Fast-Failover Group in the

OpenFlow specification to react to the link failures [20]. A

corresponding table in the switch can be configured to monitor

the status of ports and interfaces to undertake an action inde-

pendently of the controller.

VI. THE ARCHITECTURE OF OUR SDN-CONTROLLER

In this section, we illustrate the internal architecture of our

controller. We show the main components of our system and

how they cooperate to allow the traffic to be forwarded

according to the policies defined by the user.

The internal architecture of our SDN-controller is shown in

Fig. 8. It consists of four main components, called: 1)

BGPSpeaker, 2) PacketHandler, 3) Network Handler, and 4)

PolicyHandler. We now discuss each component in detail.

The BGPSpeaker component implements a BGP speaker

being able to establish BGP peering with other speakers, to

receive and to announce the BGP packets, and to maintain a

full BGP RIB. This component is crucial for two main rea-

sons: it guarantees backward compatibility with the standard

IP-speaking routers running the BGP protocols and it allows

the policies to be expanded, according to the process widely

described in Section V.

The PacketHandler component offers basic functionalities

for parsing and creating standard packets used by the control-

ler to accomplish its tasks. For example, our SDN-controller

relies on this component to handle the ARP traffic exchanged

on the peering LAN of the IXP.

The NetworkHandler component allows the SDN-controller

to interact with each SDN-enabled switch. This component

implements most of the functionalities described in Section VII.

Finally, PolicyHandler is the core component of the DESI

controller which implements all the algorithms described in

this paper. We explain it as follows.

The internal representation of the PolicyHandler is depicted

in Fig. 9. It consists of a set of sub-components, each of which

performs a specific task. The Loader component simply loads

the policies (e.g., from a file) and builds the suitable data-

structures representing them. The policyHandler performs a

check on the input policies using the PolicyChecker. It cooper-

ates with the PolicySplitter component to build policies only

containing the AND operator, according to Section V. After

the policies have been loaded, they are stored in the Policy-

Container component, which exploits the DependencyGraph

component to build the graph of policies dependencies. Also,

by interacting with the Cover component, the PolicyContainer

can raise a warning in case of a problem of covering among

policies is happening. Now, the policies are available to be

selected and then translated into forwarding rules according to

our approaches.

The PolicySelector component selects a policy from the set

of policies. In the case of the Reactive approach, this compo-

nent is triggered once a packet reaches the network devices; if

the Proactive approach is running, then it is triggered in

advance (e.g., during the start-up phase of the controller). The

interaction with the network devices explains why it exploits

the NetworkHandler component, whereas the interaction with

the PacketHandler is justified by the need of interacting with

the traffic. Finally, it also interacts with the Expander to carry

Fig. 8. High level view of the internal architecture of our SDN-controller.

Fig. 9. A detailed view of the internal architecture of the PolicyHandler.
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out the expansion process described in Section V. To perform

such a step, the Expander needs to exploit the BGPSpeaker

component, which provides a simple way to access the infor-

mation contained in the BGP RIB. We recall that such an

interface can be made available since that component imple-

ments a fully standard BGP speaker capable of establishing

BGP peering. Note that after calling the Expander the control-

ler checks the rule using PolicyChecker.

VII. APPLICABILITY CONSIDERATIONS

In this section, we discuss several aspects related to the

applicability of DESI. We focus on considerations about spe-

cific scenarios and backward compatibility with standard (or

legacy) solutions (e.g., interconnection with IP-speaking

nodes running the BGP protocol).

Commonly, a provider is interconnected to many IXPs.

Such a choice is typically motivated by either resilience or

performance reasons. In the first case, a provider typically

implements the primary-backup strategies over the peering,

whereas, in the second scenario, load-balancing policies are

applied. In every case, there might be the need of having mul-

tiple controllers. On one hand, more controllers represent a

valid fault-tolerance strategy. On the other hand, performance

increases when each device is handled by its controller, espe-

cially in the case of processing the full routing table.

Many techniques can be adopted to design solutions using

multiple controllers. We now discuss several of them. The

first solution is built according to the master-slave architec-

ture, consisting of a pair of controllers. A controller of that

pair (called master) is managing the SDN-enabled devices

and the second one (called slave) starts to act when the other

fails. In case robustness is very crucial, more than two con-

trollers can be used, resulting in a cluster. In this case, we

assume that both master and slave controllers handle all the

SDN-enabled devices. Sometimes, such an architecture is

natively supported by OpenFlow devices. Indeed, it is possi-

ble to set two (or even more) controllers during the device

configuration: one acting as master and the others acting as

the slave. In this scenario, the OpenFlow device typically

sends the same information to all the controllers, allo-

wing them to have the internal knowledge of the network

perfectly aligned. Relying on keep-alive messages, the switch

can verify if the master controller is running or not. In

case of failure, the device immediately changes the control-

ler, giving to the slave the role of master, being ready to

change once again as soon as the master becomes again

reachable.

If such an operational way is not supported by the device,

multiple controllers can still be used. Nevertheless, the syn-

chronization among the controllers is demanded to the control-

lers themselves, that now have to exchange information about

the SDN-enabled devices autonomously, without any kind of

support from the device. Such synchronization is carried out

according to standard strategies used in distributed systems

(e.g., cold or warm approaches) so that the slave can replace

the master without any lack of information. Surely, other

solutions can be implemented, provided that the internal state

of the controllers is aligned when the master fails and the slave

replaces it.

Another scenario involving multiple controllers is the fol-

lowing. A provider might choose to have a single controller

for each IXP it is connected to. The main difference with the

previous scenario is that in this case, each controller handles a

single device, or in general, a subset of the whole devices the

provider has in different IXPs, whereas in the master-slave

approach each controller handles all the devices. Even in this

approach, controllers must synchronize their internal states.

As a solution, iBGP peering among the controllers can be set

as in standard architectures. Also, route reflectors strategies

can be applied for increasing the scalability.

A. Backward Compatibility

Another consideration in terms of applicability is referred to

as the backward compatibility. Indeed, our architecture is fully

compliant with standard (or legacy) ones. There are no limita-

tions in establishing BGP peering with other providers that

use IP-speaking nodes. Our solution does not force other pro-

viders in the IXP to have an SDN-controller. Our SDN-con-

troller can establish BGP peering either with other SDN-

controllers or standard IP-speaking routers without requiring

any specific configuration on both sides.

B. Route Server

As the final consideration, we discuss route servers. Com-

monly, IXPs offer the possibility to each participant to estab-

lish BGP peering with one or more router servers. A route

server is a collector of BGP announcements, allowing pro-

viders to have multiple logical interconnections by setting up

a single BGP peering instead of multiple ones. Even in this

case, our SDN-controller can establish peering with the route

server, with no technological limitations. There could be just a

limitation in terms of the possibility to choose among different

paths. Indeed, a route server typically computes a single best

path and then only that path is announced along with each

BGP peering. Such an operational way reduces the number of

available alternatives that each provider has. Apart from that,

there are no restrictions.

Even if other considerations might be done, we argue that

what we discussed in this section is a significant sample

addressing the most important aspects related to the adoption

of our proposal in production environments.

VIII. EVALUATION

To validate the practical applicability of our approach, we

implemented a prototype version of DESI based on the Ryu

framework [21], since it provides an implementation of a stan-

dard BGP speaker. We used Kathar�a [22] as a framework to

create a network and to run all the SDN components of the

testbed. We focus our measurements on scalability aspects,

taking into account the impact of our proposal in terms of

resource consumption and the time needed to perform its
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tasks.Our simulations consisted of two parts. First, we built a

small IXP in which our implementation run, to test the func-

tionality of our controller. Second, we focused on resource

consumption on the machine hosting the controller and the

time spent by DESI to carry out its activities. The tests were

carried out varying both BGP announcements and the number

of policies for both the Reactive and the Proactive approaches.

The number of BGP announcements varies up to 800 k BGP

announcements and the number of policies is in the range of

[500,2000] resulting in having 1 million policies for an IXP

with 500 members.

A. The Testbed

We run our experiments in an Ubuntu virtual machine

equipped with 16 CPU cores at 1.9 GHz and 64 GB of RAM.

We use Python psutil library to measure the CPU and RAM

utilization.

Fig. 10 shows the topology used to run our functionality

experiments. The network contains a simple IXP consisting of

four members (AS10, AS20, AS30, and AS40), each equipped

with an SDN-enabled switch (OF1, OF2, OF3, and OF4) and

with an SDN-controller (C1, C2, C3, and C4). Inside each

provider’s network, we place a standard IP-speaking node

(R1, R2, R31, R32, and R4) representing, without loss of gen-

erality, the whole network of the provider itself. In the case of

member AS30, we use two nodes (R31 and R32) to reproduce

the case in which a provider connects multiple border routers

in the IXP. This is typically done for robustness or perfor-

mance purposes, like primary/backup or load balancing strate-

gies, respectively. The IXP switch fabric is a legacy layer 2

switch.

In the testbed, we assume that each controller is directly

connected to its corresponding SDN-switch. This assumption

is not restrictive. Indeed, since we do not introduce any con-

straints on the provider’s backbone, we only need IP connec-

tivity between SDN-controller and SDN-switch. Note that

there are two connections between those components. Such

connections represent logical links: one link is used for the

OpenFlow messages, whereas the second one is used for the

BGP messages. We highlight that this interconnection is

logical and not physical. Indeed, every technology that guar-

antees traffic isolation can be used (e.g., VLAN).

Each SDN-controller establishes a BGP peering with all the

other controllers. Within those peerings, each provider

announces a single prefix. Also, each SDN-controller gets its

policies from a file. No restrictions are applied, namely, each

controller does not filter anything, resulting in a full-mesh of

peerings. Therefore, the controllers of the members act inde-

pendently. For this experiment, we run both reactive and pro-

active approaches. We considered the following conditions: 1)

We checked that each controller was able to successfully per-

form ARP requests over the peering LAN. This check is

needed to allow the BGP messages to reach the right control-

ler. 2) We checked that each BGP announcement was able to

reach any other provider. We also checked that the announce-

ments were successfully stored in the BGP RIB of each con-

troller. 3) We checked that the traffic generated by each

provider towards each known destination in the IXP was cor-

rectly forwarded according to the policies of each member.

The above functionality experiments were successfully carried

out for each approach. Namely, we observed that our imple-

mentation works as expected.

For those experiments, we focus on a pair of SDN-control-

lers having a peering between them. For privacy concerns,

DESI stores the routing policies of each member within its

physical devices and there is no single controller DESI han-

dling traffic of all IXP members. Therefore, we focus on the

resource consumption of DESI.

B. DESI Performance

DeSI Stress test. We measure the performance of DESI with

up to 800 k BGP announcements for a large-scale evaluation

purpose (see Fig. 11). Fig. 11(a) shows that the required time

for DESI to perform BGP announcements linearly increases

by increasing the number of BGP announcements. DESI needs

� 8 minutes to announce 800 k prefixes. Fig. 11(b) depicts the

percentage of RAM and CPU utilization for announcing the

same number of prefixes. The RAM utilization slightly

increases by increasing the number of BGP announcements

and DESI uses � 7 percent of RAM to announce 800 k pre-

fixes. Note that we fully utilize the CPU of the controller in

this experiment and each controller uses just one CPU core for

performing its operations. In comparison, today’s RSes report

convergence times ranging between 3 and 10 minutes [23],

Fig. 10. The topology used for the functionality tests. It simulates a simple
IXP consisting of four members, each announcing just one prefix.

Fig. 11. The performance of DESI with up to 800 k BGP announcements. (a)
Time to handle BGP announcements. (b) Resource utilization.
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[24]. It is worth noting that our code is not optimized for pro-

duction and is just a prototype.

Time analysis. We measure the required time for DESI to

perform the following tasks: 1) translate policies into Open-

Flow rules; 2) install the OpenFlow rules; 3) redo the above

tasks when a set of policies changes. We vary the number of

policies in the range of [500,2000] for each participant while

considering an IXP with 500 participants results in having 1

million policies. Herein, we report the time analysis results of

the proactive approach. Fig. 12(a) and Fig. 12(b) show the

required time by DESI to translate the participants’ policies

into OpenFlow rules and to install them into the OpenFlow

switch, respectively. The required time for DESI to generate

OF rules from the participant’s policies is at most 190 seconds

for 2000 policies (see Fig. 12(a)). However, the required time

to install the generated forwarding rules for the same policies

is less than 2 seconds. Note that, in the case of translating poli-

cies into OpenFlow rules, we are not considering the time

induced by the network latency.

We now check the performance of DESI for scenarios when

a provider modifies or changes its policies and measure the

required time to recheck the policies for the covering problem

for different scenarios. We assume that in the best case, poli-

cies of the members stay unchanged while half of them change

in the average case. We also assume that all policies change in

the worst case resulting in a complete reset of routing policies.

Fig. 13(a) shows that by increasing the number of policy

changes, DESI requires more time to recheck for the covering

problem in the average and worst cases. Finally, we report the

time to update the OpenFlow rules resulted from policy

changes. Fig. 13(b) illustrates that by increasing the percen-

tages of policy changes, DESI needs more time to update the

OpenFlow forwarding rules after checking the covering prob-

lem. Indeed, it requires � 1 s to update all the OpenFlow rules

if all the policies change.

C. Comparison With iSDX

We now compare DESI with iSDX [7] in terms of different

design and performance parameters. DESI keeps the IXP fab-

ric as-is and does not install any forwarding rule at IXP fabric.

The forwarding rule computation in DESI is done using partic-

ipant controller whereas in iSDX the participant controller

does the computations and sends the forwarding rules to the

iSDX controller to install in IXP fabric. In the latter case, the

overall computation time comes from the summation of the

computing time of the participant controller and iSDX control-

ler plus the communication delay among them. Assuming the

same data-trace of iSDX in [25], we compare the two systems

as follows.

Forwarding table entries. DESI encodes the reachability

information of neighbors similar to those of iSDX. Therefore,

the total number of forwarding rules is the same in both sys-

tems. DESI installs forwarding rules on the network device of

members, while iSDX does this in IXP fabric. Fig. 14(a)

depicts the number of forwarding table entries for each device

in IXP for DESI and iSDX. DESI requires on average 500x

less table space than iSDX for an IXP with 500 members. For

example, iSDX installs 65 250 forwarding rules for 500 partic-

ipants on the IXP fabric while DESI does not install any rule

on the IXP fabric but it installs � 131 on each member device

for the same data-trace.

Update latency. The iSDX controller is in charge of han-

dling all BGP updates whereas in DESI the corresponding con-

troller of the member takes care of them. Fig. 14(b) shows the

update latency of iSDX and DESI in response to BGP updates.

Similar to forwarding table entries, DESI drastically has lower

latency in response to the BGP updates because the corre-

sponding participant controller performs the OpenFlow rule

update in the flow table entry independently.

Memory cost. iSDX uses four forwarding tables to encode

the reachability information using the VMAC address, but

DESI needs two tables for the same purpose using the meta-

data registry of OpenFlow. Fig. 14(c) presents that DESI

requires drastically less memory space to encode the reach-

ability information because it uses two tables with less number

of match fields. Additionally, DESI keeps the IXP fabric

unchanged.

The ARP overhead. iSDX uses the ARP message to

update the virtual MAC address of the participant if the for-

warding behavior of that participant changes. The VMAC

address rewriting adds an extra overhead of ARP messages

to the IXP fabric. The DESI does not introduce extra ARP

overhead in such scenarios because the IXP fabric remains

unchanged.

IX. DISCUSSION

Migration. DESI allows the IXPs and their members to

gradually migrate to a fully SDX-based architecture using the

Fig. 13. The performance of DESI. a) Time to check the policies for the cov-
ering problem in the best, average, and worst-case scenarios. b) Time to
update the OF rules impacted by policy changes.

Fig. 12. The performance of DESI. a) Time to translate the policies into the
OpenFlow rules. b) Latency to install the OpenFlow rules generated by the set
of policies.
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decentralized architecture. We did a test in this regard by

establishing a BGP peering among the legacy BGP router with

an SDN controller of a member and confirm that the two BGP

speakers can exchange the BGP packets. Therefore, IXP and

its members can leverage the advantages offered by DESI for

the migration.

Memory Space. DESI leverages the metadata registry

offered by the OpenFlow to encode the reachability infor-

mation of the members. This metadata field uses 64 bits of

memory, while iSDX exploits VMAC address with the size

of 48 bits for encoding the reachability information. We can

use VMAC in DESI to even decrease the memory usage of

the devices, but this choice forces us to rewrite the MAC

address of the packets. As our architecture drastically

reduces memory usage by distributing the forwarding rules

among the members’ devices, thus the tradeoff of memory

space between the metadata registry and VMAC field is

negligible.

Routing correctness. Currently, DESI relies on the network

administrator for the correctness of routing policies. However,

individual controllers of the members can install the forward-

ing rules in such a way that the traffic is deflected away from

the default BGP best path for a specific prefix. This situation

can lead to a persistent traffic loop [26]. We are studying strat-

egies and countermeasures, mainly based on the extensions of

the Gao-Rexford conditions [17] to avoid such a possible

issue. We leave this part as future work.

X. CONCLUSION

In this paper, we present DESI that is a decentralized SDN-

based architecture for IXPs. DESI guarantees the privacy of

routing policies of ISPs while opening to the possibility of

overriding the standard traffic forwarding of BGP using the

members’ SDN-controller. Also, DESI leaves the IXP’s switch

fabric as is. DESI scales for the IXPs with a large number of

networks due to its design which requires no changes from the

IXP fabric side. It also introduces an expressive policy lan-

guage for the members to configure their routing policies. Fur-

thermore, it gives the possibility of slowly migrating to the

SDN-enabled IXPs. We are interested in exploring the possi-

bility of extending DESI with novel data-plane programmabil-

ity paradigms, such as P4 [27].
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